lighttpd 1.4.x
https://www.lighttpd.net/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4786 lines
181 KiB
4786 lines
181 KiB
#ifndef INCLUDED_ALGO_XXHASH_H |
|
#define INCLUDED_ALGO_XXHASH_H |
|
#include "first.h" |
|
|
|
/*(lighttpd customization)*/ |
|
/*#define XXH_NO_INLINE_HINTS 1*/ |
|
/*#define XXH_REROLL 1*/ |
|
#define XXH_NO_LONG_LONG |
|
|
|
|
|
#ifdef HAVE_XXHASH_H |
|
|
|
#include <xxhash.h> |
|
|
|
#else /* ! HAVE_XXHASH_H */ |
|
|
|
/* |
|
* xxHash - Extremely Fast Hash algorithm |
|
* Header File |
|
* Copyright (C) 2012-2020 Yann Collet |
|
* |
|
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are |
|
* met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following disclaimer |
|
* in the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
* You can contact the author at: |
|
* - xxHash homepage: https://www.xxhash.com |
|
* - xxHash source repository: https://github.com/Cyan4973/xxHash |
|
*/ |
|
|
|
/* TODO: update */ |
|
/* Notice extracted from xxHash homepage: |
|
|
|
xxHash is an extremely fast hash algorithm, running at RAM speed limits. |
|
It also successfully passes all tests from the SMHasher suite. |
|
|
|
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
|
|
|
Name Speed Q.Score Author |
|
xxHash 5.4 GB/s 10 |
|
CrapWow 3.2 GB/s 2 Andrew |
|
MumurHash 3a 2.7 GB/s 10 Austin Appleby |
|
SpookyHash 2.0 GB/s 10 Bob Jenkins |
|
SBox 1.4 GB/s 9 Bret Mulvey |
|
Lookup3 1.2 GB/s 9 Bob Jenkins |
|
SuperFastHash 1.2 GB/s 1 Paul Hsieh |
|
CityHash64 1.05 GB/s 10 Pike & Alakuijala |
|
FNV 0.55 GB/s 5 Fowler, Noll, Vo |
|
CRC32 0.43 GB/s 9 |
|
MD5-32 0.33 GB/s 10 Ronald L. Rivest |
|
SHA1-32 0.28 GB/s 10 |
|
|
|
Q.Score is a measure of quality of the hash function. |
|
It depends on successfully passing SMHasher test set. |
|
10 is a perfect score. |
|
|
|
Note: SMHasher's CRC32 implementation is not the fastest one. |
|
Other speed-oriented implementations can be faster, |
|
especially in combination with PCLMUL instruction: |
|
https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 |
|
|
|
A 64-bit version, named XXH64, is available since r35. |
|
It offers much better speed, but for 64-bit applications only. |
|
Name Speed on 64 bits Speed on 32 bits |
|
XXH64 13.8 GB/s 1.9 GB/s |
|
XXH32 6.8 GB/s 6.0 GB/s |
|
*/ |
|
|
|
#if defined (__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
/* **************************** |
|
* INLINE mode |
|
******************************/ |
|
/*! |
|
* XXH_INLINE_ALL (and XXH_PRIVATE_API) |
|
* Use these build macros to inline xxhash into the target unit. |
|
* Inlining improves performance on small inputs, especially when the length is |
|
* expressed as a compile-time constant: |
|
* |
|
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
|
* |
|
* It also keeps xxHash symbols private to the unit, so they are not exported. |
|
* |
|
* Usage: |
|
* #define XXH_INLINE_ALL |
|
* #include "xxhash.h" |
|
* |
|
* Do not compile and link xxhash.o as a separate object, as it is not useful. |
|
*/ |
|
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
|
&& !defined(XXH_INLINE_ALL_31684351384) |
|
/* this section should be traversed only once */ |
|
# define XXH_INLINE_ALL_31684351384 |
|
/* give access to the advanced API, required to compile implementations */ |
|
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
|
# define XXH_STATIC_LINKING_ONLY |
|
/* make all functions private */ |
|
# undef XXH_PUBLIC_API |
|
# if defined(__GNUC__) |
|
# define XXH_PUBLIC_API static __inline __attribute__((unused)) |
|
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
|
# define XXH_PUBLIC_API static inline |
|
# elif defined(_MSC_VER) |
|
# define XXH_PUBLIC_API static __inline |
|
# else |
|
/* note: this version may generate warnings for unused static functions */ |
|
# define XXH_PUBLIC_API static |
|
# endif |
|
|
|
/* |
|
* This part deals with the special case where a unit wants to inline xxHash, |
|
* but "xxhash.h" has previously been included without XXH_INLINE_ALL, such |
|
* as part of some previously included *.h header file. |
|
* Without further action, the new include would just be ignored, |
|
* and functions would effectively _not_ be inlined (silent failure). |
|
* The following macros solve this situation by prefixing all inlined names, |
|
* avoiding naming collision with previous inclusions. |
|
*/ |
|
# ifdef XXH_NAMESPACE |
|
# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported" |
|
/* |
|
* Note: Alternative: #undef all symbols (it's a pretty large list). |
|
* Without #error: it compiles, but functions are actually not inlined. |
|
*/ |
|
# endif |
|
# define XXH_NAMESPACE XXH_INLINE_ |
|
/* |
|
* Some identifiers (enums, type names) are not symbols, but they must |
|
* still be renamed to avoid redeclaration. |
|
* Alternative solution: do not redeclare them. |
|
* However, this requires some #ifdefs, and is a more dispersed action. |
|
* Meanwhile, renaming can be achieved in a single block |
|
*/ |
|
# define XXH_IPREF(Id) XXH_INLINE_ ## Id |
|
# define XXH_OK XXH_IPREF(XXH_OK) |
|
# define XXH_ERROR XXH_IPREF(XXH_ERROR) |
|
# define XXH_errorcode XXH_IPREF(XXH_errorcode) |
|
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
|
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
|
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
|
# define XXH32_state_s XXH_IPREF(XXH32_state_s) |
|
# define XXH32_state_t XXH_IPREF(XXH32_state_t) |
|
# define XXH64_state_s XXH_IPREF(XXH64_state_s) |
|
# define XXH64_state_t XXH_IPREF(XXH64_state_t) |
|
# define XXH3_state_s XXH_IPREF(XXH3_state_s) |
|
# define XXH3_state_t XXH_IPREF(XXH3_state_t) |
|
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
|
/* Ensure the header is parsed again, even if it was previously included */ |
|
# undef XXHASH_H_5627135585666179 |
|
# undef XXHASH_H_STATIC_13879238742 |
|
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
|
|
|
|
|
|
|
/* **************************************************************** |
|
* Stable API |
|
*****************************************************************/ |
|
#ifndef XXHASH_H_5627135585666179 |
|
#define XXHASH_H_5627135585666179 1 |
|
|
|
/* specific declaration modes for Windows */ |
|
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
|
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
|
# ifdef XXH_EXPORT |
|
# define XXH_PUBLIC_API __declspec(dllexport) |
|
# elif XXH_IMPORT |
|
# define XXH_PUBLIC_API __declspec(dllimport) |
|
# endif |
|
# else |
|
# define XXH_PUBLIC_API /* do nothing */ |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* XXH_NAMESPACE, aka Namespace Emulation: |
|
* |
|
* If you want to include _and expose_ xxHash functions from within your own |
|
* library, but also want to avoid symbol collisions with other libraries which |
|
* may also include xxHash, you can use XXH_NAMESPACE to automatically prefix |
|
* any public symbol from xxhash library with the value of XXH_NAMESPACE |
|
* (therefore, avoid empty or numeric values). |
|
* |
|
* Note that no change is required within the calling program as long as it |
|
* includes `xxhash.h`: Regular symbol names will be automatically translated |
|
* by this header. |
|
*/ |
|
#ifdef XXH_NAMESPACE |
|
# define XXH_CAT(A,B) A##B |
|
# define XXH_NAME2(A,B) XXH_CAT(A,B) |
|
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
|
/* XXH32 */ |
|
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
|
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
|
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
|
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
|
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
|
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
|
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
|
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
|
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
|
/* XXH64 */ |
|
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
|
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
|
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
|
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
|
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
|
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
|
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
|
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
|
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
|
/* XXH3_64bits */ |
|
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
|
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
|
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
|
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
|
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
|
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
|
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
|
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
|
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
|
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
|
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
|
# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
|
/* XXH3_128bits */ |
|
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
|
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
|
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
|
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
|
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
|
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
|
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
|
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
|
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
|
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
|
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
|
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
|
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
|
#endif |
|
|
|
|
|
/* ************************************* |
|
* Version |
|
***************************************/ |
|
#define XXH_VERSION_MAJOR 0 |
|
#define XXH_VERSION_MINOR 8 |
|
#define XXH_VERSION_RELEASE 0 |
|
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void); |
|
|
|
|
|
/* **************************** |
|
* Definitions |
|
******************************/ |
|
#include <stddef.h> /* size_t */ |
|
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; |
|
|
|
|
|
/*-********************************************************************** |
|
* 32-bit hash |
|
************************************************************************/ |
|
#if !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
# include <stdint.h> |
|
typedef uint32_t XXH32_hash_t; |
|
#else |
|
# include <limits.h> |
|
# if UINT_MAX == 0xFFFFFFFFUL |
|
typedef unsigned int XXH32_hash_t; |
|
# else |
|
# if ULONG_MAX == 0xFFFFFFFFUL |
|
typedef unsigned long XXH32_hash_t; |
|
# else |
|
# error "unsupported platform: need a 32-bit type" |
|
# endif |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* XXH32(): |
|
* Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input". |
|
* The memory between input & input+length must be valid (allocated and read-accessible). |
|
* "seed" can be used to alter the result predictably. |
|
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s |
|
* |
|
* Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
|
* and offers true 64/128 bit hash results. It provides a superior level of |
|
* dispersion, and greatly reduces the risks of collisions. |
|
*/ |
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
|
|
|
/******* Streaming *******/ |
|
|
|
/* |
|
* Streaming functions generate the xxHash value from an incrememtal input. |
|
* This method is slower than single-call functions, due to state management. |
|
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
|
* |
|
* An XXH state must first be allocated using `XXH*_createState()`. |
|
* |
|
* Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
|
* |
|
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
|
* |
|
* The function returns an error code, with 0 meaning OK, and any other value |
|
* meaning there is an error. |
|
* |
|
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
|
* This function returns the nn-bits hash as an int or long long. |
|
* |
|
* It's still possible to continue inserting input into the hash state after a |
|
* digest, and generate new hash values later on by invoking `XXH*_digest()`. |
|
* |
|
* When done, release the state using `XXH*_freeState()`. |
|
*/ |
|
|
|
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ |
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); |
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
|
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
|
|
|
/******* Canonical representation *******/ |
|
|
|
/* |
|
* The default return values from XXH functions are unsigned 32 and 64 bit |
|
* integers. |
|
* This the simplest and fastest format for further post-processing. |
|
* |
|
* However, this leaves open the question of what is the order on the byte level, |
|
* since little and big endian conventions will store the same number differently. |
|
* |
|
* The canonical representation settles this issue by mandating big-endian |
|
* convention, the same convention as human-readable numbers (large digits first). |
|
* |
|
* When writing hash values to storage, sending them over a network, or printing |
|
* them, it's highly recommended to use the canonical representation to ensure |
|
* portability across a wider range of systems, present and future. |
|
* |
|
* The following functions allow transformation of hash values to and from |
|
* canonical format. |
|
*/ |
|
|
|
typedef struct { unsigned char digest[4]; } XXH32_canonical_t; |
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG |
|
/*-********************************************************************** |
|
* 64-bit hash |
|
************************************************************************/ |
|
#if !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
# include <stdint.h> |
|
typedef uint64_t XXH64_hash_t; |
|
#else |
|
/* the following type must have a width of 64-bit */ |
|
typedef unsigned long long XXH64_hash_t; |
|
#endif |
|
|
|
/*! |
|
* XXH64(): |
|
* Returns the 64-bit hash of sequence of length @length stored at memory |
|
* address @input. |
|
* @seed can be used to alter the result predictably. |
|
* |
|
* This function usually runs faster on 64-bit systems, but slower on 32-bit |
|
* systems (see benchmark). |
|
* |
|
* Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
|
* and offers true 64/128 bit hash results. It provides a superior level of |
|
* dispersion, and greatly reduces the risks of collisions. |
|
*/ |
|
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed); |
|
|
|
/******* Streaming *******/ |
|
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); |
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); |
|
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); |
|
|
|
/******* Canonical representation *******/ |
|
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); |
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); |
|
|
|
|
|
/*-********************************************************************** |
|
* XXH3 64-bit variant |
|
************************************************************************/ |
|
|
|
/* ************************************************************************ |
|
* XXH3 is a new hash algorithm featuring: |
|
* - Improved speed for both small and large inputs |
|
* - True 64-bit and 128-bit outputs |
|
* - SIMD acceleration |
|
* - Improved 32-bit viability |
|
* |
|
* Speed analysis methodology is explained here: |
|
* |
|
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
|
* |
|
* In general, expect XXH3 to run about ~2x faster on large inputs and >3x |
|
* faster on small ones compared to XXH64, though exact differences depend on |
|
* the platform. |
|
* |
|
* The algorithm is portable: Like XXH32 and XXH64, it generates the same hash |
|
* on all platforms. |
|
* |
|
* It benefits greatly from SIMD and 64-bit arithmetic, but does not require it. |
|
* |
|
* Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run |
|
* XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are |
|
* explained in the implementation. |
|
* |
|
* Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, |
|
* ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro. |
|
* |
|
* XXH3 offers 2 variants, _64bits and _128bits. |
|
* When only 64 bits are needed, prefer calling the _64bits variant, as it |
|
* reduces the amount of mixing, resulting in faster speed on small inputs. |
|
* |
|
* It's also generally simpler to manipulate a scalar return type than a struct. |
|
* |
|
* The 128-bit version adds additional strength, but it is slightly slower. |
|
* |
|
* The XXH3 algorithm is still in development. |
|
* The results it produces may still change in future versions. |
|
* |
|
* Results produced by v0.7.x are not comparable with results from v0.7.y. |
|
* However, the API is completely stable, and it can safely be used for |
|
* ephemeral data (local sessions). |
|
* |
|
* Avoid storing values in long-term storage until the algorithm is finalized. |
|
* XXH3's return values will be officially finalized upon reaching v0.8.0. |
|
* |
|
* After which, return values of XXH3 and XXH128 will no longer change in |
|
* future versions. |
|
* |
|
* The API supports one-shot hashing, streaming mode, and custom secrets. |
|
*/ |
|
|
|
/* XXH3_64bits(): |
|
* default 64-bit variant, using default secret and default seed of 0. |
|
* It's the fastest variant. */ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); |
|
|
|
/* |
|
* XXH3_64bits_withSeed(): |
|
* This variant generates a custom secret on the fly |
|
* based on default secret altered using the `seed` value. |
|
* While this operation is decently fast, note that it's not completely free. |
|
* Note: seed==0 produces the same results as XXH3_64bits(). |
|
*/ |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
|
|
|
/* |
|
* XXH3_64bits_withSecret(): |
|
* It's possible to provide any blob of bytes as a "secret" to generate the hash. |
|
* This makes it more difficult for an external actor to prepare an intentional collision. |
|
* The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). |
|
* However, the quality of produced hash values depends on secret's entropy. |
|
* Technically, the secret must look like a bunch of random bytes. |
|
* Avoid "trivial" or structured data such as repeated sequences or a text document. |
|
* Whenever unsure about the "randomness" of the blob of bytes, |
|
* consider relabelling it as a "custom seed" instead, |
|
* and employ "XXH3_generateSecret()" (see below) |
|
* to generate a high entropy secret derived from the custom seed. |
|
*/ |
|
#define XXH3_SECRET_SIZE_MIN 136 |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
|
|
|
|
|
/******* Streaming *******/ |
|
/* |
|
* Streaming requires state maintenance. |
|
* This operation costs memory and CPU. |
|
* As a consequence, streaming is slower than one-shot hashing. |
|
* For better performance, prefer one-shot functions whenever applicable. |
|
*/ |
|
typedef struct XXH3_state_s XXH3_state_t; |
|
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); |
|
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
|
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); |
|
|
|
/* |
|
* XXH3_64bits_reset(): |
|
* Initialize with default parameters. |
|
* digest will be equivalent to `XXH3_64bits()`. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); |
|
/* |
|
* XXH3_64bits_reset_withSeed(): |
|
* Generate a custom secret from `seed`, and store it into `statePtr`. |
|
* digest will be equivalent to `XXH3_64bits_withSeed()`. |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
|
/* |
|
* XXH3_64bits_reset_withSecret(): |
|
* `secret` is referenced, it _must outlive_ the hash streaming session. |
|
* Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, |
|
* and the quality of produced hash values depends on secret's entropy |
|
* (secret's content should look like a bunch of random bytes). |
|
* When in doubt about the randomness of a candidate `secret`, |
|
* consider employing `XXH3_generateSecret()` instead (see below). |
|
*/ |
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); |
|
|
|
/* note : canonical representation of XXH3 is the same as XXH64 |
|
* since they both produce XXH64_hash_t values */ |
|
|
|
|
|
/*-********************************************************************** |
|
* XXH3 128-bit variant |
|
************************************************************************/ |
|
|
|
typedef struct { |
|
XXH64_hash_t low64; |
|
XXH64_hash_t high64; |
|
} XXH128_hash_t; |
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
|
|
|
/******* Streaming *******/ |
|
/* |
|
* Streaming requires state maintenance. |
|
* This operation costs memory and CPU. |
|
* As a consequence, streaming is slower than one-shot hashing. |
|
* For better performance, prefer one-shot functions whenever applicable. |
|
* |
|
* XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
|
* Use already declared XXH3_createState() and XXH3_freeState(). |
|
* |
|
* All reset and streaming functions have same meaning as their 64-bit counterpart. |
|
*/ |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); |
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); |
|
|
|
/* Following helper functions make it possible to compare XXH128_hast_t values. |
|
* Since XXH128_hash_t is a structure, this capability is not offered by the language. |
|
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
|
|
|
/*! |
|
* XXH128_isEqual(): |
|
* Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
|
*/ |
|
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
|
|
|
/*! |
|
* XXH128_cmp(): |
|
* |
|
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
|
* |
|
* return: >0 if *h128_1 > *h128_2 |
|
* =0 if *h128_1 == *h128_2 |
|
* <0 if *h128_1 < *h128_2 |
|
*/ |
|
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); |
|
|
|
|
|
/******* Canonical representation *******/ |
|
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
|
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); |
|
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); |
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */ |
|
|
|
#endif /* XXHASH_H_5627135585666179 */ |
|
|
|
|
|
|
|
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
|
#define XXHASH_H_STATIC_13879238742 |
|
/* **************************************************************************** |
|
* This section contains declarations which are not guaranteed to remain stable. |
|
* They may change in future versions, becoming incompatible with a different |
|
* version of the library. |
|
* These declarations should only be used with static linking. |
|
* Never use them in association with dynamic linking! |
|
***************************************************************************** */ |
|
|
|
/* |
|
* These definitions are only present to allow static allocation |
|
* of XXH states, on stack or in a struct, for example. |
|
* Never **ever** access their members directly. |
|
*/ |
|
|
|
struct XXH32_state_s { |
|
XXH32_hash_t total_len_32; |
|
XXH32_hash_t large_len; |
|
XXH32_hash_t v1; |
|
XXH32_hash_t v2; |
|
XXH32_hash_t v3; |
|
XXH32_hash_t v4; |
|
XXH32_hash_t mem32[4]; |
|
XXH32_hash_t memsize; |
|
XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */ |
|
}; /* typedef'd to XXH32_state_t */ |
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
|
|
|
struct XXH64_state_s { |
|
XXH64_hash_t total_len; |
|
XXH64_hash_t v1; |
|
XXH64_hash_t v2; |
|
XXH64_hash_t v3; |
|
XXH64_hash_t v4; |
|
XXH64_hash_t mem64[4]; |
|
XXH32_hash_t memsize; |
|
XXH32_hash_t reserved32; /* required for padding anyway */ |
|
XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */ |
|
}; /* typedef'd to XXH64_state_t */ |
|
|
|
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */ |
|
# include <stdalign.h> |
|
# define XXH_ALIGN(n) alignas(n) |
|
#elif defined(__GNUC__) |
|
# define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
|
#elif defined(_MSC_VER) |
|
# define XXH_ALIGN(n) __declspec(align(n)) |
|
#else |
|
# define XXH_ALIGN(n) /* disabled */ |
|
#endif |
|
|
|
/* Old GCC versions only accept the attribute after the type in structures. */ |
|
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
|
&& defined(__GNUC__) |
|
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
|
#else |
|
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
|
#endif |
|
|
|
#define XXH3_INTERNALBUFFER_SIZE 256 |
|
#define XXH3_SECRET_DEFAULT_SIZE 192 |
|
struct XXH3_state_s { |
|
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
|
/* used to store a custom secret generated from a seed */ |
|
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
|
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
|
XXH32_hash_t bufferedSize; |
|
XXH32_hash_t reserved32; |
|
size_t nbStripesSoFar; |
|
XXH64_hash_t totalLen; |
|
size_t nbStripesPerBlock; |
|
size_t secretLimit; |
|
XXH64_hash_t seed; |
|
XXH64_hash_t reserved64; |
|
const unsigned char* extSecret; /* reference to external secret; |
|
* if == NULL, use .customSecret instead */ |
|
/* note: there may be some padding at the end due to alignment on 64 bytes */ |
|
}; /* typedef'd to XXH3_state_t */ |
|
|
|
#undef XXH_ALIGN_MEMBER |
|
|
|
/* When the XXH3_state_t structure is merely emplaced on stack, |
|
* it should be initialized with XXH3_INITSTATE() or a memset() |
|
* in case its first reset uses XXH3_NNbits_reset_withSeed(). |
|
* This init can be omitted if the first reset uses default or _withSecret mode. |
|
* This operation isn't necessary when the state is created with XXH3_createState(). |
|
* Note that this doesn't prepare the state for a streaming operation, |
|
* it's still necessary to use XXH3_NNbits_reset*() afterwards. |
|
*/ |
|
#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } |
|
|
|
|
|
/* === Experimental API === */ |
|
/* Symbols defined below must be considered tied to a specific library version. */ |
|
|
|
/* |
|
* XXH3_generateSecret(): |
|
* |
|
* Derive a high-entropy secret from any user-defined content, named customSeed. |
|
* The generated secret can be used in combination with `*_withSecret()` functions. |
|
* The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, |
|
* as it becomes much more difficult for an external actor to guess how to impact the calculation logic. |
|
* |
|
* The function accepts as input a custom seed of any length and any content, |
|
* and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE |
|
* into an already allocated buffer secretBuffer. |
|
* The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long. |
|
* |
|
* The generated secret can then be used with any `*_withSecret()` variant. |
|
* Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, |
|
* `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` |
|
* are part of this list. They all accept a `secret` parameter |
|
* which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN) |
|
* _and_ feature very high entropy (consist of random-looking bytes). |
|
* These conditions can be a high bar to meet, so |
|
* this function can be used to generate a secret of proper quality. |
|
* |
|
* customSeed can be anything. It can have any size, even small ones, |
|
* and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes. |
|
* The resulting `secret` will nonetheless provide all expected qualities. |
|
* |
|
* Supplying NULL as the customSeed copies the default secret into `secretBuffer`. |
|
* When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
|
*/ |
|
XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize); |
|
|
|
|
|
/* simple short-cut to pre-selected XXH3_128bits variant */ |
|
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); |
|
|
|
|
|
#endif /* XXH_NO_LONG_LONG */ |
|
|
|
|
|
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
|
# define XXH_IMPLEMENTATION |
|
#endif |
|
|
|
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
|
|
|
|
|
/* ======================================================================== */ |
|
/* ======================================================================== */ |
|
/* ======================================================================== */ |
|
|
|
|
|
/*-********************************************************************** |
|
* xxHash implementation |
|
*-********************************************************************** |
|
* xxHash's implementation used to be hosted inside xxhash.c. |
|
* |
|
* However, inlining requires implementation to be visible to the compiler, |
|
* hence be included alongside the header. |
|
* Previously, implementation was hosted inside xxhash.c, |
|
* which was then #included when inlining was activated. |
|
* This construction created issues with a few build and install systems, |
|
* as it required xxhash.c to be stored in /include directory. |
|
* |
|
* xxHash implementation is now directly integrated within xxhash.h. |
|
* As a consequence, xxhash.c is no longer needed in /include. |
|
* |
|
* xxhash.c is still available and is still useful. |
|
* In a "normal" setup, when xxhash is not inlined, |
|
* xxhash.h only exposes the prototypes and public symbols, |
|
* while xxhash.c can be built into an object file xxhash.o |
|
* which can then be linked into the final binary. |
|
************************************************************************/ |
|
|
|
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
|
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
|
# define XXH_IMPLEM_13a8737387 |
|
|
|
/* ************************************* |
|
* Tuning parameters |
|
***************************************/ |
|
/*! |
|
* XXH_FORCE_MEMORY_ACCESS: |
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is |
|
* safe and portable. |
|
* |
|
* Unfortunately, on some target/compiler combinations, the generated assembly |
|
* is sub-optimal. |
|
* |
|
* The below switch allow selection of a different access method |
|
* in the search for improved performance. |
|
* Method 0 (default): |
|
* Use `memcpy()`. Safe and portable. Default. |
|
* Method 1: |
|
* `__attribute__((packed))` statement. It depends on compiler extensions |
|
* and is therefore not portable. |
|
* This method is safe if your compiler supports it, and *generally* as |
|
* fast or faster than `memcpy`. |
|
* Method 2: |
|
* Direct access via cast. This method doesn't depend on the compiler but |
|
* violates the C standard. |
|
* It can generate buggy code on targets which do not support unaligned |
|
* memory accesses. |
|
* But in some circumstances, it's the only known way to get the most |
|
* performance (example: GCC + ARMv6) |
|
* Method 3: |
|
* Byteshift. This can generate the best code on old compilers which don't |
|
* inline small `memcpy()` calls, and it might also be faster on big-endian |
|
* systems which lack a native byteswap instruction. |
|
* See https://stackoverflow.com/a/32095106/646947 for details. |
|
* Prefer these methods in priority order (0 > 1 > 2 > 3) |
|
*/ |
|
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
|
# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6) |
|
# define XXH_FORCE_MEMORY_ACCESS 2 |
|
# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
|
(defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7))) |
|
# define XXH_FORCE_MEMORY_ACCESS 1 |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* XXH_ACCEPT_NULL_INPUT_POINTER: |
|
* If the input pointer is NULL, xxHash's default behavior is to dereference it, |
|
* triggering a segfault. |
|
* When this macro is enabled, xxHash actively checks the input for a null pointer. |
|
* If it is, the result for null input pointers is the same as a zero-length input. |
|
*/ |
|
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ |
|
# define XXH_ACCEPT_NULL_INPUT_POINTER 0 |
|
#endif |
|
|
|
/*! |
|
* XXH_FORCE_ALIGN_CHECK: |
|
* This is an important performance trick |
|
* for architectures without decent unaligned memory access performance. |
|
* It checks for input alignment, and when conditions are met, |
|
* uses a "fast path" employing direct 32-bit/64-bit read, |
|
* resulting in _dramatically faster_ read speed. |
|
* |
|
* The check costs one initial branch per hash, which is generally negligible, but not zero. |
|
* Moreover, it's not useful to generate binary for an additional code path |
|
* if memory access uses same instruction for both aligned and unaligned adresses. |
|
* |
|
* In these cases, the alignment check can be removed by setting this macro to 0. |
|
* Then the code will always use unaligned memory access. |
|
* Align check is automatically disabled on x86, x64 & arm64, |
|
* which are platforms known to offer good unaligned memory accesses performance. |
|
* |
|
* This option does not affect XXH3 (only XXH32 and XXH64). |
|
*/ |
|
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
|
# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \ |
|
|| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ |
|
# define XXH_FORCE_ALIGN_CHECK 0 |
|
# else |
|
# define XXH_FORCE_ALIGN_CHECK 1 |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* XXH_NO_INLINE_HINTS: |
|
* |
|
* By default, xxHash tries to force the compiler to inline almost all internal |
|
* functions. |
|
* |
|
* This can usually improve performance due to reduced jumping and improved |
|
* constant folding, but significantly increases the size of the binary which |
|
* might not be favorable. |
|
* |
|
* Additionally, sometimes the forced inlining can be detrimental to performance, |
|
* depending on the architecture. |
|
* |
|
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
|
* compiler full control on whether to inline or not. |
|
* |
|
* When not optimizing (-O0), optimizing for size (-Os, -Oz), or using |
|
* -fno-inline with GCC or Clang, this will automatically be defined. |
|
*/ |
|
#ifndef XXH_NO_INLINE_HINTS |
|
# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ |
|
|| defined(__NO_INLINE__) /* -O0, -fno-inline */ |
|
# define XXH_NO_INLINE_HINTS 1 |
|
# else |
|
# define XXH_NO_INLINE_HINTS 0 |
|
# endif |
|
#endif |
|
|
|
/*! |
|
* XXH_REROLL: |
|
* Whether to reroll XXH32_finalize, and XXH64_finalize, |
|
* instead of using an unrolled jump table/if statement loop. |
|
* |
|
* This is automatically defined on -Os/-Oz on GCC and Clang. |
|
*/ |
|
#ifndef XXH_REROLL |
|
# if defined(__OPTIMIZE_SIZE__) |
|
# define XXH_REROLL 1 |
|
# else |
|
# define XXH_REROLL 0 |
|
# endif |
|
#endif |
|
|
|
|
|
/* ************************************* |
|
* Includes & Memory related functions |
|
***************************************/ |
|
/*! |
|
* Modify the local functions below should you wish to use |
|
* different memory routines for malloc() and free() |
|
*/ |
|
#include <stdlib.h> |
|
|
|
static void* XXH_malloc(size_t s) { return malloc(s); } |
|
static void XXH_free(void* p) { free(p); } |
|
|
|
/*! and for memcpy() */ |
|
#include <string.h> |
|
static void* XXH_memcpy(void* dest, const void* src, size_t size) |
|
{ |
|
return memcpy(dest,src,size); |
|
} |
|
|
|
#include <limits.h> /* ULLONG_MAX */ |
|
|
|
|
|
/* ************************************* |
|
* Compiler Specific Options |
|
***************************************/ |
|
#ifdef _MSC_VER /* Visual Studio warning fix */ |
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
|
#endif |
|
|
|
#if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
|
# if defined(__GNUC__) |
|
# define XXH_FORCE_INLINE static __attribute__((unused)) |
|
# else |
|
# define XXH_FORCE_INLINE static |
|
# endif |
|
# define XXH_NO_INLINE static |
|
/* enable inlining hints */ |
|
#elif defined(_MSC_VER) /* Visual Studio */ |
|
# define XXH_FORCE_INLINE static __forceinline |
|
# define XXH_NO_INLINE static __declspec(noinline) |
|
#elif defined(__GNUC__) |
|
# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
|
# define XXH_NO_INLINE static __attribute__((noinline)) |
|
#elif defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
|
# define XXH_FORCE_INLINE static inline |
|
# define XXH_NO_INLINE static |
|
#else |
|
# define XXH_FORCE_INLINE static |
|
# define XXH_NO_INLINE static |
|
#endif |
|
|
|
|
|
|
|
/* ************************************* |
|
* Debug |
|
***************************************/ |
|
/* |
|
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
|
* compiler's command line options. The value must be a number. |
|
*/ |
|
#ifndef XXH_DEBUGLEVEL |
|
# ifdef DEBUGLEVEL /* backwards compat */ |
|
# define XXH_DEBUGLEVEL DEBUGLEVEL |
|
# else |
|
# define XXH_DEBUGLEVEL 0 |
|
# endif |
|
#endif |
|
|
|
#if (XXH_DEBUGLEVEL>=1) |
|
# include <assert.h> /* note: can still be disabled with NDEBUG */ |
|
# define XXH_ASSERT(c) assert(c) |
|
#else |
|
# define XXH_ASSERT(c) ((void)0) |
|
#endif |
|
|
|
/* note: use after variable declarations */ |
|
#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0) |
|
|
|
|
|
/* ************************************* |
|
* Basic Types |
|
***************************************/ |
|
#if !defined (__VMS) \ |
|
&& (defined (__cplusplus) \ |
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
|
# include <stdint.h> |
|
typedef uint8_t xxh_u8; |
|
#else |
|
typedef unsigned char xxh_u8; |
|
#endif |
|
typedef XXH32_hash_t xxh_u32; |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define BYTE xxh_u8 |
|
# define U8 xxh_u8 |
|
# define U32 xxh_u32 |
|
#endif |
|
|
|
/* *** Memory access *** */ |
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
/* |
|
* Manual byteshift. Best for old compilers which don't inline memcpy. |
|
* We actually directly use XXH_readLE32 and XXH_readBE32. |
|
*/ |
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
|
|
|
/* |
|
* Force direct memory access. Only works on CPU which support unaligned memory |
|
* access in hardware. |
|
*/ |
|
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
|
|
|
/* |
|
* __pack instructions are safer but compiler specific, hence potentially |
|
* problematic for some compilers. |
|
* |
|
* Currently only defined for GCC and ICC. |
|
*/ |
|
#ifdef XXH_OLD_NAMES |
|
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
|
#endif |
|
static xxh_u32 XXH_read32(const void* ptr) |
|
{ |
|
typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; |
|
return ((const xxh_unalign*)ptr)->u32; |
|
} |
|
|
|
#else |
|
|
|
/* |
|
* Portable and safe solution. Generally efficient. |
|
* see: https://stackoverflow.com/a/32095106/646947 |
|
*/ |
|
static xxh_u32 XXH_read32(const void* memPtr) |
|
{ |
|
xxh_u32 val; |
|
memcpy(&val, memPtr, sizeof(val)); |
|
return val; |
|
} |
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
|
|
|
|
|
/* *** Endianess *** */ |
|
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
|
|
|
/*! |
|
* XXH_CPU_LITTLE_ENDIAN: |
|
* Defined to 1 if the target is little endian, or 0 if it is big endian. |
|
* It can be defined externally, for example on the compiler command line. |
|
* |
|
* If it is not defined, a runtime check (which is usually constant folded) |
|
* is used instead. |
|
*/ |
|
#ifndef XXH_CPU_LITTLE_ENDIAN |
|
/* |
|
* Try to detect endianness automatically, to avoid the nonstandard behavior |
|
* in `XXH_isLittleEndian()` |
|
*/ |
|
# if defined(_WIN32) /* Windows is always little endian */ \ |
|
|| defined(__LITTLE_ENDIAN__) \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
|
# define XXH_CPU_LITTLE_ENDIAN 1 |
|
# elif defined(__BIG_ENDIAN__) \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
|
# define XXH_CPU_LITTLE_ENDIAN 0 |
|
# else |
|
/* |
|
* runtime test, presumed to simplify to a constant by compiler |
|
*/ |
|
static int XXH_isLittleEndian(void) |
|
{ |
|
/* |
|
* Portable and well-defined behavior. |
|
* Don't use static: it is detrimental to performance. |
|
*/ |
|
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
|
return one.c[0]; |
|
} |
|
# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
|
# endif |
|
#endif |
|
|
|
|
|
|
|
|
|
/* **************************************** |
|
* Compiler-specific Functions and Macros |
|
******************************************/ |
|
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
|
|
|
#ifdef __has_builtin |
|
# define XXH_HAS_BUILTIN(x) __has_builtin(x) |
|
#else |
|
# define XXH_HAS_BUILTIN(x) 0 |
|
#endif |
|
|
|
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
|
&& XXH_HAS_BUILTIN(__builtin_rotateleft64) |
|
# define XXH_rotl32 __builtin_rotateleft32 |
|
# define XXH_rotl64 __builtin_rotateleft64 |
|
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
|
#elif defined(_MSC_VER) |
|
# define XXH_rotl32(x,r) _rotl(x,r) |
|
# define XXH_rotl64(x,r) _rotl64(x,r) |
|
#else |
|
# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
|
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
|
#endif |
|
|
|
#if defined(_MSC_VER) /* Visual Studio */ |
|
# define XXH_swap32 _byteswap_ulong |
|
#elif XXH_GCC_VERSION >= 403 |
|
# define XXH_swap32 __builtin_bswap32 |
|
#else |
|
static xxh_u32 XXH_swap32 (xxh_u32 x) |
|
{ |
|
return ((x << 24) & 0xff000000 ) | |
|
((x << 8) & 0x00ff0000 ) | |
|
((x >> 8) & 0x0000ff00 ) | |
|
((x >> 24) & 0x000000ff ); |
|
} |
|
#endif |
|
|
|
|
|
/* *************************** |
|
* Memory reads |
|
*****************************/ |
|
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
|
|
|
/* |
|
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
|
* |
|
* This is ideal for older compilers which don't inline memcpy. |
|
*/ |
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[0] |
|
| ((xxh_u32)bytePtr[1] << 8) |
|
| ((xxh_u32)bytePtr[2] << 16) |
|
| ((xxh_u32)bytePtr[3] << 24); |
|
} |
|
|
|
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[3] |
|
| ((xxh_u32)bytePtr[2] << 8) |
|
| ((xxh_u32)bytePtr[1] << 16) |
|
| ((xxh_u32)bytePtr[0] << 24); |
|
} |
|
|
|
#else |
|
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
|
} |
|
|
|
static xxh_u32 XXH_readBE32(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
|
} |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u32 |
|
XXH_readLE32_align(const void* ptr, XXH_alignment align) |
|
{ |
|
if (align==XXH_unaligned) { |
|
return XXH_readLE32(ptr); |
|
} else { |
|
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
|
} |
|
} |
|
|
|
|
|
/* ************************************* |
|
* Misc |
|
***************************************/ |
|
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
|
|
|
|
|
/* ******************************************************************* |
|
* 32-bit hash functions |
|
*********************************************************************/ |
|
static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */ |
|
static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */ |
|
static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */ |
|
static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */ |
|
static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */ |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PRIME32_1 XXH_PRIME32_1 |
|
# define PRIME32_2 XXH_PRIME32_2 |
|
# define PRIME32_3 XXH_PRIME32_3 |
|
# define PRIME32_4 XXH_PRIME32_4 |
|
# define PRIME32_5 XXH_PRIME32_5 |
|
#endif |
|
|
|
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
|
{ |
|
acc += input * XXH_PRIME32_2; |
|
acc = XXH_rotl32(acc, 13); |
|
acc *= XXH_PRIME32_1; |
|
#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
|
/* |
|
* UGLY HACK: |
|
* This inline assembly hack forces acc into a normal register. This is the |
|
* only thing that prevents GCC and Clang from autovectorizing the XXH32 |
|
* loop (pragmas and attributes don't work for some resason) without globally |
|
* disabling SSE4.1. |
|
* |
|
* The reason we want to avoid vectorization is because despite working on |
|
* 4 integers at a time, there are multiple factors slowing XXH32 down on |
|
* SSE4: |
|
* - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
|
* newer chips!) making it slightly slower to multiply four integers at |
|
* once compared to four integers independently. Even when pmulld was |
|
* fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
|
* just to multiply unless doing a long operation. |
|
* |
|
* - Four instructions are required to rotate, |
|
* movqda tmp, v // not required with VEX encoding |
|
* pslld tmp, 13 // tmp <<= 13 |
|
* psrld v, 19 // x >>= 19 |
|
* por v, tmp // x |= tmp |
|
* compared to one for scalar: |
|
* roll v, 13 // reliably fast across the board |
|
* shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
|
* |
|
* - Instruction level parallelism is actually more beneficial here because |
|
* the SIMD actually serializes this operation: While v1 is rotating, v2 |
|
* can load data, while v3 can multiply. SSE forces them to operate |
|
* together. |
|
* |
|
* How this hack works: |
|
* __asm__("" // Declare an assembly block but don't declare any instructions |
|
* : // However, as an Input/Output Operand, |
|
* "+r" // constrain a read/write operand (+) as a general purpose register (r). |
|
* (acc) // and set acc as the operand |
|
* ); |
|
* |
|
* Because of the 'r', the compiler has promised that seed will be in a |
|
* general purpose register and the '+' says that it will be 'read/write', |
|
* so it has to assume it has changed. It is like volatile without all the |
|
* loads and stores. |
|
* |
|
* Since the argument has to be in a normal register (not an SSE register), |
|
* each time XXH32_round is called, it is impossible to vectorize. |
|
*/ |
|
__asm__("" : "+r" (acc)); |
|
#endif |
|
return acc; |
|
} |
|
|
|
/* mix all bits */ |
|
static xxh_u32 XXH32_avalanche(xxh_u32 h32) |
|
{ |
|
h32 ^= h32 >> 15; |
|
h32 *= XXH_PRIME32_2; |
|
h32 ^= h32 >> 13; |
|
h32 *= XXH_PRIME32_3; |
|
h32 ^= h32 >> 16; |
|
return(h32); |
|
} |
|
|
|
#define XXH_get32bits(p) XXH_readLE32_align(p, align) |
|
|
|
static xxh_u32 |
|
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) |
|
{ |
|
#define XXH_PROCESS1 do { \ |
|
h32 += (*ptr++) * XXH_PRIME32_5; \ |
|
h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ |
|
} while (0) |
|
|
|
#define XXH_PROCESS4 do { \ |
|
h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
|
ptr += 4; \ |
|
h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ |
|
} while (0) |
|
|
|
/* Compact rerolled version */ |
|
if (XXH_REROLL) { |
|
len &= 15; |
|
while (len >= 4) { |
|
XXH_PROCESS4; |
|
len -= 4; |
|
} |
|
while (len > 0) { |
|
XXH_PROCESS1; |
|
--len; |
|
} |
|
return XXH32_avalanche(h32); |
|
} else { |
|
switch(len&15) /* or switch(bEnd - p) */ { |
|
case 12: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 8: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 4: XXH_PROCESS4; |
|
return XXH32_avalanche(h32); |
|
|
|
case 13: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 9: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 5: XXH_PROCESS4; |
|
XXH_PROCESS1; |
|
return XXH32_avalanche(h32); |
|
|
|
case 14: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 10: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 6: XXH_PROCESS4; |
|
XXH_PROCESS1; |
|
XXH_PROCESS1; |
|
return XXH32_avalanche(h32); |
|
|
|
case 15: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 11: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 7: XXH_PROCESS4; |
|
/* fallthrough */ |
|
case 3: XXH_PROCESS1; |
|
/* fallthrough */ |
|
case 2: XXH_PROCESS1; |
|
/* fallthrough */ |
|
case 1: XXH_PROCESS1; |
|
/* fallthrough */ |
|
case 0: return XXH32_avalanche(h32); |
|
} |
|
XXH_ASSERT(0); |
|
return h32; /* reaching this point is deemed impossible */ |
|
} |
|
} |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PROCESS1 XXH_PROCESS1 |
|
# define PROCESS4 XXH_PROCESS4 |
|
#else |
|
# undef XXH_PROCESS1 |
|
# undef XXH_PROCESS4 |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u32 |
|
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
|
{ |
|
const xxh_u8* bEnd = input + len; |
|
xxh_u32 h32; |
|
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
|
if (input==NULL) { |
|
len=0; |
|
bEnd=input=(const xxh_u8*)(size_t)16; |
|
} |
|
#endif |
|
|
|
if (len>=16) { |
|
const xxh_u8* const limit = bEnd - 15; |
|
xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
|
xxh_u32 v2 = seed + XXH_PRIME32_2; |
|
xxh_u32 v3 = seed + 0; |
|
xxh_u32 v4 = seed - XXH_PRIME32_1; |
|
|
|
do { |
|
v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
|
v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
|
v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
|
v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
|
} while (input < limit); |
|
|
|
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
|
+ XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
|
} else { |
|
h32 = seed + XXH_PRIME32_5; |
|
} |
|
|
|
h32 += (xxh_u32)len; |
|
|
|
return XXH32_finalize(h32, input, len&15, align); |
|
} |
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
|
{ |
|
#if 0 |
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
|
XXH32_state_t state; |
|
XXH32_reset(&state, seed); |
|
XXH32_update(&state, (const xxh_u8*)input, len); |
|
return XXH32_digest(&state); |
|
|
|
#else |
|
|
|
if (XXH_FORCE_ALIGN_CHECK) { |
|
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
|
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
|
} } |
|
|
|
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
|
#endif |
|
} |
|
|
|
|
|
|
|
/******* Hash streaming *******/ |
|
|
|
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
|
{ |
|
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
|
} |
|
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
|
{ |
|
XXH_free(statePtr); |
|
return XXH_OK; |
|
} |
|
|
|
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
|
{ |
|
memcpy(dstState, srcState, sizeof(*dstState)); |
|
} |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
|
{ |
|
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
|
memset(&state, 0, sizeof(state)); |
|
state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
|
state.v2 = seed + XXH_PRIME32_2; |
|
state.v3 = seed + 0; |
|
state.v4 = seed - XXH_PRIME32_1; |
|
/* do not write into reserved, planned to be removed in a future version */ |
|
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
|
return XXH_OK; |
|
} |
|
|
|
|
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
|
{ |
|
if (input==NULL) |
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
|
return XXH_OK; |
|
#else |
|
return XXH_ERROR; |
|
#endif |
|
|
|
{ const xxh_u8* p = (const xxh_u8*)input; |
|
const xxh_u8* const bEnd = p + len; |
|
|
|
state->total_len_32 += (XXH32_hash_t)len; |
|
state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
|
|
|
if (state->memsize + len < 16) { /* fill in tmp buffer */ |
|
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
|
state->memsize += (XXH32_hash_t)len; |
|
return XXH_OK; |
|
} |
|
|
|
if (state->memsize) { /* some data left from previous update */ |
|
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
|
{ const xxh_u32* p32 = state->mem32; |
|
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++; |
|
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++; |
|
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++; |
|
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); |
|
} |
|
p += 16-state->memsize; |
|
state->memsize = 0; |
|
} |
|
|
|
if (p <= bEnd-16) { |
|
const xxh_u8* const limit = bEnd - 16; |
|
xxh_u32 v1 = state->v1; |
|
xxh_u32 v2 = state->v2; |
|
xxh_u32 v3 = state->v3; |
|
xxh_u32 v4 = state->v4; |
|
|
|
do { |
|
v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4; |
|
v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4; |
|
v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4; |
|
v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4; |
|
} while (p<=limit); |
|
|
|
state->v1 = v1; |
|
state->v2 = v2; |
|
state->v3 = v3; |
|
state->v4 = v4; |
|
} |
|
|
|
if (p < bEnd) { |
|
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
|
state->memsize = (unsigned)(bEnd-p); |
|
} |
|
} |
|
|
|
return XXH_OK; |
|
} |
|
|
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state) |
|
{ |
|
xxh_u32 h32; |
|
|
|
if (state->large_len) { |
|
h32 = XXH_rotl32(state->v1, 1) |
|
+ XXH_rotl32(state->v2, 7) |
|
+ XXH_rotl32(state->v3, 12) |
|
+ XXH_rotl32(state->v4, 18); |
|
} else { |
|
h32 = state->v3 /* == seed */ + XXH_PRIME32_5; |
|
} |
|
|
|
h32 += state->total_len_32; |
|
|
|
return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
|
} |
|
|
|
|
|
/******* Canonical representation *******/ |
|
|
|
/* |
|
* The default return values from XXH functions are unsigned 32 and 64 bit |
|
* integers. |
|
* |
|
* The canonical representation uses big endian convention, the same convention |
|
* as human-readable numbers (large digits first). |
|
* |
|
* This way, hash values can be written into a file or buffer, remaining |
|
* comparable across different systems. |
|
* |
|
* The following functions allow transformation of hash values to and from their |
|
* canonical format. |
|
*/ |
|
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
|
{ |
|
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
|
memcpy(dst, &hash, sizeof(*dst)); |
|
} |
|
|
|
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
|
{ |
|
return XXH_readBE32(src); |
|
} |
|
|
|
|
|
#ifndef XXH_NO_LONG_LONG |
|
|
|
/* ******************************************************************* |
|
* 64-bit hash functions |
|
*********************************************************************/ |
|
|
|
/******* Memory access *******/ |
|
|
|
typedef XXH64_hash_t xxh_u64; |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define U64 xxh_u64 |
|
#endif |
|
|
|
/*! |
|
* XXH_REROLL_XXH64: |
|
* Whether to reroll the XXH64_finalize() loop. |
|
* |
|
* Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a |
|
* performance gain on 64-bit hosts, as only one jump is required. |
|
* |
|
* However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit |
|
* registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial |
|
* to unroll. The code becomes ridiculously large (the largest function in the |
|
* binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is |
|
* also slightly faster because it fits into cache better and is more likely |
|
* to be inlined by the compiler. |
|
* |
|
* If XXH_REROLL is defined, this is ignored and the loop is always rerolled. |
|
*/ |
|
#ifndef XXH_REROLL_XXH64 |
|
# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \ |
|
|| !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \ |
|
|| defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \ |
|
|| defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \ |
|
|| defined(__mips64__) || defined(__mips64)) /* mips64 */ \ |
|
|| (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */ |
|
# define XXH_REROLL_XXH64 1 |
|
# else |
|
# define XXH_REROLL_XXH64 0 |
|
# endif |
|
#endif /* !defined(XXH_REROLL_XXH64) */ |
|
|
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
/* |
|
* Manual byteshift. Best for old compilers which don't inline memcpy. |
|
* We actually directly use XXH_readLE64 and XXH_readBE64. |
|
*/ |
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
|
static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; } |
|
|
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
|
|
|
/* |
|
* __pack instructions are safer, but compiler specific, hence potentially |
|
* problematic for some compilers. |
|
* |
|
* Currently only defined for GCC and ICC. |
|
*/ |
|
#ifdef XXH_OLD_NAMES |
|
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
|
#endif |
|
static xxh_u64 XXH_read64(const void* ptr) |
|
{ |
|
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; |
|
return ((const xxh_unalign64*)ptr)->u64; |
|
} |
|
|
|
#else |
|
|
|
/* |
|
* Portable and safe solution. Generally efficient. |
|
* see: https://stackoverflow.com/a/32095106/646947 |
|
*/ |
|
static xxh_u64 XXH_read64(const void* memPtr) |
|
{ |
|
xxh_u64 val; |
|
memcpy(&val, memPtr, sizeof(val)); |
|
return val; |
|
} |
|
|
|
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
|
|
|
#if defined(_MSC_VER) /* Visual Studio */ |
|
# define XXH_swap64 _byteswap_uint64 |
|
#elif XXH_GCC_VERSION >= 403 |
|
# define XXH_swap64 __builtin_bswap64 |
|
#else |
|
static xxh_u64 XXH_swap64 (xxh_u64 x) |
|
{ |
|
return ((x << 56) & 0xff00000000000000ULL) | |
|
((x << 40) & 0x00ff000000000000ULL) | |
|
((x << 24) & 0x0000ff0000000000ULL) | |
|
((x << 8) & 0x000000ff00000000ULL) | |
|
((x >> 8) & 0x00000000ff000000ULL) | |
|
((x >> 24) & 0x0000000000ff0000ULL) | |
|
((x >> 40) & 0x000000000000ff00ULL) | |
|
((x >> 56) & 0x00000000000000ffULL); |
|
} |
|
#endif |
|
|
|
|
|
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
|
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[0] |
|
| ((xxh_u64)bytePtr[1] << 8) |
|
| ((xxh_u64)bytePtr[2] << 16) |
|
| ((xxh_u64)bytePtr[3] << 24) |
|
| ((xxh_u64)bytePtr[4] << 32) |
|
| ((xxh_u64)bytePtr[5] << 40) |
|
| ((xxh_u64)bytePtr[6] << 48) |
|
| ((xxh_u64)bytePtr[7] << 56); |
|
} |
|
|
|
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
|
{ |
|
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
|
return bytePtr[7] |
|
| ((xxh_u64)bytePtr[6] << 8) |
|
| ((xxh_u64)bytePtr[5] << 16) |
|
| ((xxh_u64)bytePtr[4] << 24) |
|
| ((xxh_u64)bytePtr[3] << 32) |
|
| ((xxh_u64)bytePtr[2] << 40) |
|
| ((xxh_u64)bytePtr[1] << 48) |
|
| ((xxh_u64)bytePtr[0] << 56); |
|
} |
|
|
|
#else |
|
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
|
} |
|
|
|
static xxh_u64 XXH_readBE64(const void* ptr) |
|
{ |
|
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
|
} |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u64 |
|
XXH_readLE64_align(const void* ptr, XXH_alignment align) |
|
{ |
|
if (align==XXH_unaligned) |
|
return XXH_readLE64(ptr); |
|
else |
|
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
|
} |
|
|
|
|
|
/******* xxh64 *******/ |
|
|
|
static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
|
static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
|
static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
|
static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
|
static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PRIME64_1 XXH_PRIME64_1 |
|
# define PRIME64_2 XXH_PRIME64_2 |
|
# define PRIME64_3 XXH_PRIME64_3 |
|
# define PRIME64_4 XXH_PRIME64_4 |
|
# define PRIME64_5 XXH_PRIME64_5 |
|
#endif |
|
|
|
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
|
{ |
|
acc += input * XXH_PRIME64_2; |
|
acc = XXH_rotl64(acc, 31); |
|
acc *= XXH_PRIME64_1; |
|
return acc; |
|
} |
|
|
|
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
|
{ |
|
val = XXH64_round(0, val); |
|
acc ^= val; |
|
acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
|
return acc; |
|
} |
|
|
|
static xxh_u64 XXH64_avalanche(xxh_u64 h64) |
|
{ |
|
h64 ^= h64 >> 33; |
|
h64 *= XXH_PRIME64_2; |
|
h64 ^= h64 >> 29; |
|
h64 *= XXH_PRIME64_3; |
|
h64 ^= h64 >> 32; |
|
return h64; |
|
} |
|
|
|
|
|
#define XXH_get64bits(p) XXH_readLE64_align(p, align) |
|
|
|
static xxh_u64 |
|
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) |
|
{ |
|
#define XXH_PROCESS1_64 do { \ |
|
h64 ^= (*ptr++) * XXH_PRIME64_5; \ |
|
h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \ |
|
} while (0) |
|
|
|
#define XXH_PROCESS4_64 do { \ |
|
h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \ |
|
ptr += 4; \ |
|
h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \ |
|
} while (0) |
|
|
|
#define XXH_PROCESS8_64 do { \ |
|
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \ |
|
ptr += 8; \ |
|
h64 ^= k1; \ |
|
h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \ |
|
} while (0) |
|
|
|
/* Rerolled version for 32-bit targets is faster and much smaller. */ |
|
if (XXH_REROLL || XXH_REROLL_XXH64) { |
|
len &= 31; |
|
while (len >= 8) { |
|
XXH_PROCESS8_64; |
|
len -= 8; |
|
} |
|
if (len >= 4) { |
|
XXH_PROCESS4_64; |
|
len -= 4; |
|
} |
|
while (len > 0) { |
|
XXH_PROCESS1_64; |
|
--len; |
|
} |
|
return XXH64_avalanche(h64); |
|
} else { |
|
switch(len & 31) { |
|
case 24: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 16: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 8: XXH_PROCESS8_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 28: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 20: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 12: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 4: XXH_PROCESS4_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 25: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 17: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 9: XXH_PROCESS8_64; |
|
XXH_PROCESS1_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 29: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 21: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 13: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 5: XXH_PROCESS4_64; |
|
XXH_PROCESS1_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 26: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 18: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 10: XXH_PROCESS8_64; |
|
XXH_PROCESS1_64; |
|
XXH_PROCESS1_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 30: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 22: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 14: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 6: XXH_PROCESS4_64; |
|
XXH_PROCESS1_64; |
|
XXH_PROCESS1_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 27: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 19: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 11: XXH_PROCESS8_64; |
|
XXH_PROCESS1_64; |
|
XXH_PROCESS1_64; |
|
XXH_PROCESS1_64; |
|
return XXH64_avalanche(h64); |
|
|
|
case 31: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 23: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 15: XXH_PROCESS8_64; |
|
/* fallthrough */ |
|
case 7: XXH_PROCESS4_64; |
|
/* fallthrough */ |
|
case 3: XXH_PROCESS1_64; |
|
/* fallthrough */ |
|
case 2: XXH_PROCESS1_64; |
|
/* fallthrough */ |
|
case 1: XXH_PROCESS1_64; |
|
/* fallthrough */ |
|
case 0: return XXH64_avalanche(h64); |
|
} |
|
} |
|
/* impossible to reach */ |
|
XXH_ASSERT(0); |
|
return 0; /* unreachable, but some compilers complain without it */ |
|
} |
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define PROCESS1_64 XXH_PROCESS1_64 |
|
# define PROCESS4_64 XXH_PROCESS4_64 |
|
# define PROCESS8_64 XXH_PROCESS8_64 |
|
#else |
|
# undef XXH_PROCESS1_64 |
|
# undef XXH_PROCESS4_64 |
|
# undef XXH_PROCESS8_64 |
|
#endif |
|
|
|
XXH_FORCE_INLINE xxh_u64 |
|
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
|
{ |
|
const xxh_u8* bEnd = input + len; |
|
xxh_u64 h64; |
|
|
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
|
if (input==NULL) { |
|
len=0; |
|
bEnd=input=(const xxh_u8*)(size_t)32; |
|
} |
|
#endif |
|
|
|
if (len>=32) { |
|
const xxh_u8* const limit = bEnd - 32; |
|
xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
|
xxh_u64 v2 = seed + XXH_PRIME64_2; |
|
xxh_u64 v3 = seed + 0; |
|
xxh_u64 v4 = seed - XXH_PRIME64_1; |
|
|
|
do { |
|
v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
|
v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
|
v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
|
v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
|
} while (input<=limit); |
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
|
h64 = XXH64_mergeRound(h64, v1); |
|
h64 = XXH64_mergeRound(h64, v2); |
|
h64 = XXH64_mergeRound(h64, v3); |
|
h64 = XXH64_mergeRound(h64, v4); |
|
|
|
} else { |
|
h64 = seed + XXH_PRIME64_5; |
|
} |
|
|
|
h64 += (xxh_u64) len; |
|
|
|
return XXH64_finalize(h64, input, len, align); |
|
} |
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) |
|
{ |
|
#if 0 |
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
|
XXH64_state_t state; |
|
XXH64_reset(&state, seed); |
|
XXH64_update(&state, (const xxh_u8*)input, len); |
|
return XXH64_digest(&state); |
|
|
|
#else |
|
|
|
if (XXH_FORCE_ALIGN_CHECK) { |
|
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
|
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
|
} } |
|
|
|
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
|
|
|
#endif |
|
} |
|
|
|
/******* Hash Streaming *******/ |
|
|
|
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
|
{ |
|
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
|
} |
|
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
|
{ |
|
XXH_free(statePtr); |
|
return XXH_OK; |
|
} |
|
|
|
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
|
{ |
|
memcpy(dstState, srcState, sizeof(*dstState)); |
|
} |
|
|
|
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) |
|
{ |
|
XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */ |
|
memset(&state, 0, sizeof(state)); |
|
state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
|
state.v2 = seed + XXH_PRIME64_2; |
|
state.v3 = seed + 0; |
|
state.v4 = seed - XXH_PRIME64_1; |
|
/* do not write into reserved64, might be removed in a future version */ |
|
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); |
|
return XXH_OK; |
|
} |
|
|
|
XXH_PUBLIC_API XXH_errorcode |
|
XXH64_update (XXH64_state_t* state, const void* input, size_t len) |
|
{ |
|
if (input==NULL) |
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
|
return XXH_OK; |
|
#else |
|
return XXH_ERROR; |
|
#endif |
|
|
|
{ const xxh_u8* p = (const xxh_u8*)input; |
|
const xxh_u8* const bEnd = p + len; |
|
|
|
state->total_len += len; |
|
|
|
if (state->memsize + len < 32) { /* fill in tmp buffer */ |
|
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
|
state->memsize += (xxh_u32)len; |
|
return XXH_OK; |
|
} |
|
|
|
if (state->memsize) { /* tmp buffer is full */ |
|
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
|
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0)); |
|
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1)); |
|
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2)); |
|
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3)); |
|
p += 32-state->memsize; |
|
state->memsize = 0; |
|
} |
|
|
|
if (p+32 <= bEnd) { |
|
const xxh_u8* const limit = bEnd - 32; |
|
xxh_u64 v1 = state->v1; |
|
xxh_u64 v2 = state->v2; |
|
xxh_u64 v3 = state->v3; |
|
xxh_u64 v4 = state->v4; |
|
|
|
do { |
|
v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8; |
|
v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8; |
|
v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8; |
|
v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8; |
|
} while (p<=limit); |
|
|
|
state->v1 = v1; |
|
state->v2 = v2; |
|
state->v3 = v3; |
|
state->v4 = v4; |
|
} |
|
|
|
if (p < bEnd) { |
|
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
|
state->memsize = (unsigned)(bEnd-p); |
|
} |
|
} |
|
|
|
return XXH_OK; |
|
} |
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state) |
|
{ |
|
xxh_u64 h64; |
|
|
|
if (state->total_len >= 32) { |
|
xxh_u64 const v1 = state->v1; |
|
xxh_u64 const v2 = state->v2; |
|
xxh_u64 const v3 = state->v3; |
|
xxh_u64 const v4 = state->v4; |
|
|
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
|
h64 = XXH64_mergeRound(h64, v1); |
|
h64 = XXH64_mergeRound(h64, v2); |
|
h64 = XXH64_mergeRound(h64, v3); |
|
h64 = XXH64_mergeRound(h64, v4); |
|
} else { |
|
h64 = state->v3 /*seed*/ + XXH_PRIME64_5; |
|
} |
|
|
|
h64 += (xxh_u64) state->total_len; |
|
|
|
return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
|
} |
|
|
|
|
|
/******* Canonical representation *******/ |
|
|
|
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
|
{ |
|
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
|
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
|
memcpy(dst, &hash, sizeof(*dst)); |
|
} |
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
|
{ |
|
return XXH_readBE64(src); |
|
} |
|
|
|
|
|
|
|
/* ********************************************************************* |
|
* XXH3 |
|
* New generation hash designed for speed on small keys and vectorization |
|
************************************************************************ */ |
|
|
|
/* === Compiler specifics === */ |
|
|
|
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
|
# define XXH_RESTRICT restrict |
|
#else |
|
/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ |
|
# define XXH_RESTRICT /* disable */ |
|
#endif |
|
|
|
#if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
|
|| (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
|
|| defined(__clang__) |
|
# define XXH_likely(x) __builtin_expect(x, 1) |
|
# define XXH_unlikely(x) __builtin_expect(x, 0) |
|
#else |
|
# define XXH_likely(x) (x) |
|
# define XXH_unlikely(x) (x) |
|
#endif |
|
|
|
#if defined(__GNUC__) |
|
# if defined(__AVX2__) |
|
# include <immintrin.h> |
|
# elif defined(__SSE2__) |
|
# include <emmintrin.h> |
|
# elif defined(__ARM_NEON__) || defined(__ARM_NEON) |
|
# define inline __inline__ /* circumvent a clang bug */ |
|
# include <arm_neon.h> |
|
# undef inline |
|
# endif |
|
#elif defined(_MSC_VER) |
|
# include <intrin.h> |
|
#endif |
|
|
|
/* |
|
* One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
|
* remaining a true 64-bit/128-bit hash function. |
|
* |
|
* This is done by prioritizing a subset of 64-bit operations that can be |
|
* emulated without too many steps on the average 32-bit machine. |
|
* |
|
* For example, these two lines seem similar, and run equally fast on 64-bit: |
|
* |
|
* xxh_u64 x; |
|
* x ^= (x >> 47); // good |
|
* x ^= (x >> 13); // bad |
|
* |
|
* However, to a 32-bit machine, there is a major difference. |
|
* |
|
* x ^= (x >> 47) looks like this: |
|
* |
|
* x.lo ^= (x.hi >> (47 - 32)); |
|
* |
|
* while x ^= (x >> 13) looks like this: |
|
* |
|
* // note: funnel shifts are not usually cheap. |
|
* x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
|
* x.hi ^= (x.hi >> 13); |
|
* |
|
* The first one is significantly faster than the second, simply because the |
|
* shift is larger than 32. This means: |
|
* - All the bits we need are in the upper 32 bits, so we can ignore the lower |
|
* 32 bits in the shift. |
|
* - The shift result will always fit in the lower 32 bits, and therefore, |
|
* we can ignore the upper 32 bits in the xor. |
|
* |
|
* Thanks to this optimization, XXH3 only requires these features to be efficient: |
|
* |
|
* - Usable unaligned access |
|
* - A 32-bit or 64-bit ALU |
|
* - If 32-bit, a decent ADC instruction |
|
* - A 32 or 64-bit multiply with a 64-bit result |
|
* - For the 128-bit variant, a decent byteswap helps short inputs. |
|
* |
|
* The first two are already required by XXH32, and almost all 32-bit and 64-bit |
|
* platforms which can run XXH32 can run XXH3 efficiently. |
|
* |
|
* Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
|
* notable exception. |
|
* |
|
* First of all, Thumb-1 lacks support for the UMULL instruction which |
|
* performs the important long multiply. This means numerous __aeabi_lmul |
|
* calls. |
|
* |
|
* Second of all, the 8 functional registers are just not enough. |
|
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
|
* Lo registers, and this shuffling results in thousands more MOVs than A32. |
|
* |
|
* A32 and T32 don't have this limitation. They can access all 14 registers, |
|
* do a 32->64 multiply with UMULL, and the flexible operand allowing free |
|
* shifts is helpful, too. |
|
* |
|
* Therefore, we do a quick sanity check. |
|
* |
|
* If compiling Thumb-1 for a target which supports ARM instructions, we will |
|
* emit a warning, as it is not a "sane" platform to compile for. |
|
* |
|
* Usually, if this happens, it is because of an accident and you probably need |
|
* to specify -march, as you likely meant to compile for a newer architecture. |
|
* |
|
* Credit: large sections of the vectorial and asm source code paths |
|
* have been contributed by @easyaspi314 |
|
*/ |
|
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
|
# warning "XXH3 is highly inefficient without ARM or Thumb-2." |
|
#endif |
|
|
|
/* ========================================== |
|
* Vectorization detection |
|
* ========================================== */ |
|
#define XXH_SCALAR 0 /* Portable scalar version */ |
|
#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */ |
|
#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */ |
|
#define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */ |
|
#define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */ |
|
#define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */ |
|
|
|
#ifndef XXH_VECTOR /* can be defined on command line */ |
|
# if defined(__AVX512F__) |
|
# define XXH_VECTOR XXH_AVX512 |
|
# elif defined(__AVX2__) |
|
# define XXH_VECTOR XXH_AVX2 |
|
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
|
# define XXH_VECTOR XXH_SSE2 |
|
# elif defined(__GNUC__) /* msvc support maybe later */ \ |
|
&& (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ |
|
&& (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) |
|
# define XXH_VECTOR XXH_NEON |
|
# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
|
|| (defined(__s390x__) && defined(__VEC__)) \ |
|
&& defined(__GNUC__) /* TODO: IBM XL */ |
|
# define XXH_VECTOR XXH_VSX |
|
# else |
|
# define XXH_VECTOR XXH_SCALAR |
|
# endif |
|
#endif |
|
|
|
/* |
|
* Controls the alignment of the accumulator, |
|
* for compatibility with aligned vector loads, which are usually faster. |
|
*/ |
|
#ifndef XXH_ACC_ALIGN |
|
# if defined(XXH_X86DISPATCH) |
|
# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
|
# elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
|
# define XXH_ACC_ALIGN 8 |
|
# elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
|
# define XXH_ACC_ALIGN 16 |
|
# elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
|
# define XXH_ACC_ALIGN 32 |
|
# elif XXH_VECTOR == XXH_NEON /* neon */ |
|
# define XXH_ACC_ALIGN 16 |
|
# elif XXH_VECTOR == XXH_VSX /* vsx */ |
|
# define XXH_ACC_ALIGN 16 |
|
# elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
|
# define XXH_ACC_ALIGN 64 |
|
# endif |
|
#endif |
|
|
|
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
|
|| XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
|
# define XXH_SEC_ALIGN XXH_ACC_ALIGN |
|
#else |
|
# define XXH_SEC_ALIGN 8 |
|
#endif |
|
|
|
/* |
|
* UGLY HACK: |
|
* GCC usually generates the best code with -O3 for xxHash. |
|
* |
|
* However, when targeting AVX2, it is overzealous in its unrolling resulting |
|
* in code roughly 3/4 the speed of Clang. |
|
* |
|
* There are other issues, such as GCC splitting _mm256_loadu_si256 into |
|
* _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
|
* only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
|
* |
|
* That is why when compiling the AVX2 version, it is recommended to use either |
|
* -O2 -mavx2 -march=haswell |
|
* or |
|
* -O2 -mavx2 -mno-avx256-split-unaligned-load |
|
* for decent performance, or to use Clang instead. |
|
* |
|
* Fortunately, we can control the first one with a pragma that forces GCC into |
|
* -O2, but the other one we can't control without "failed to inline always |
|
* inline function due to target mismatch" warnings. |
|
*/ |
|
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
|
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
|
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
|
# pragma GCC push_options |
|
# pragma GCC optimize("-O2") |
|
#endif |
|
|
|
|
|
#if XXH_VECTOR == XXH_NEON |
|
/* |
|
* NEON's setup for vmlal_u32 is a little more complicated than it is on |
|
* SSE2, AVX2, and VSX. |
|
* |
|
* While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. |
|
* |
|
* To do the same operation, the 128-bit 'Q' register needs to be split into |
|
* two 64-bit 'D' registers, performing this operation:: |
|
* |
|
* [ a | b ] |
|
* | '---------. .--------' | |
|
* | x | |
|
* | .---------' '--------. | |
|
* [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] |
|
* |
|
* Due to significant changes in aarch64, the fastest method for aarch64 is |
|
* completely different than the fastest method for ARMv7-A. |
|
* |
|
* ARMv7-A treats D registers as unions overlaying Q registers, so modifying |
|
* D11 will modify the high half of Q5. This is similar to how modifying AH |
|
* will only affect bits 8-15 of AX on x86. |
|
* |
|
* VZIP takes two registers, and puts even lanes in one register and odd lanes |
|
* in the other. |
|
* |
|
* On ARMv7-A, this strangely modifies both parameters in place instead of |
|
* taking the usual 3-operand form. |
|
* |
|
* Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the |
|
* lower and upper halves of the Q register to end up with the high and low |
|
* halves where we want - all in one instruction. |
|
* |
|
* vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } |
|
* |
|
* Unfortunately we need inline assembly for this: Instructions modifying two |
|
* registers at once is not possible in GCC or Clang's IR, and they have to |
|
* create a copy. |
|
* |
|
* aarch64 requires a different approach. |
|
* |
|
* In order to make it easier to write a decent compiler for aarch64, many |
|
* quirks were removed, such as conditional execution. |
|
* |
|
* NEON was also affected by this. |
|
* |
|
* aarch64 cannot access the high bits of a Q-form register, and writes to a |
|
* D-form register zero the high bits, similar to how writes to W-form scalar |
|
* registers (or DWORD registers on x86_64) work. |
|
* |
|
* The formerly free vget_high intrinsics now require a vext (with a few |
|
* exceptions) |
|
* |
|
* Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent |
|
* of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one |
|
* operand. |
|
* |
|
* The equivalent of the VZIP.32 on the lower and upper halves would be this |
|
* mess: |
|
* |
|
* ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } |
|
* zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } |
|
* zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } |
|
* |
|
* Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): |
|
* |
|
* shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); |
|
* xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); |
|
* |
|
* This is available on ARMv7-A, but is less efficient than a single VZIP.32. |
|
*/ |
|
|
|
/* |
|
* Function-like macro: |
|
* void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) |
|
* { |
|
* outLo = (uint32x2_t)(in & 0xFFFFFFFF); |
|
* outHi = (uint32x2_t)(in >> 32); |
|
* in = UNDEFINED; |
|
* } |
|
*/ |
|
# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ |
|
&& defined(__GNUC__) \ |
|
&& !defined(__aarch64__) && !defined(__arm64__) |
|
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
|
do { \ |
|
/* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ |
|
/* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ |
|
/* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ |
|
__asm__("vzip.32 %e0, %f0" : "+w" (in)); \ |
|
(outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ |
|
(outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ |
|
} while (0) |
|
# else |
|
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
|
do { \ |
|
(outLo) = vmovn_u64 (in); \ |
|
(outHi) = vshrn_n_u64 ((in), 32); \ |
|
} while (0) |
|
# endif |
|
#endif /* XXH_VECTOR == XXH_NEON */ |
|
|
|
/* |
|
* VSX and Z Vector helpers. |
|
* |
|
* This is very messy, and any pull requests to clean this up are welcome. |
|
* |
|
* There are a lot of problems with supporting VSX and s390x, due to |
|
* inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
|
*/ |
|
#if XXH_VECTOR == XXH_VSX |
|
# if defined(__s390x__) |
|
# include <s390intrin.h> |
|
# else |
|
/* gcc's altivec.h can have the unwanted consequence to unconditionally |
|
* #define bool, vector, and pixel keywords, |
|
* with bad consequences for programs already using these keywords for other purposes. |
|
* The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. |
|
* __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, |
|
* but it seems that, in some cases, it isn't. |
|
* Force the build macro to be defined, so that keywords are not altered. |
|
*/ |
|
# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) |
|
# define __APPLE_ALTIVEC__ |
|
# endif |
|
# include <altivec.h> |
|
# endif |
|
|
|
typedef __vector unsigned long long xxh_u64x2; |
|
typedef __vector unsigned char xxh_u8x16; |
|
typedef __vector unsigned xxh_u32x4; |
|
|
|
# ifndef XXH_VSX_BE |
|
# if defined(__BIG_ENDIAN__) \ |
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
|
# define XXH_VSX_BE 1 |
|
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
|
# warning "-maltivec=be is not recommended. Please use native endianness." |
|
# define XXH_VSX_BE 1 |
|
# else |
|
# define XXH_VSX_BE 0 |
|
# endif |
|
# endif /* !defined(XXH_VSX_BE) */ |
|
|
|
# if XXH_VSX_BE |
|
/* A wrapper for POWER9's vec_revb. */ |
|
# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
|
# define XXH_vec_revb vec_revb |
|
# else |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
|
{ |
|
xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
|
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
|
return vec_perm(val, val, vByteSwap); |
|
} |
|
# endif |
|
# endif /* XXH_VSX_BE */ |
|
|
|
/* |
|
* Performs an unaligned load and byte swaps it on big endian. |
|
*/ |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
|
{ |
|
xxh_u64x2 ret; |
|
memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
|
# if XXH_VSX_BE |
|
ret = XXH_vec_revb(ret); |
|
# endif |
|
return ret; |
|
} |
|
|
|
/* |
|
* vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
|
* |
|
* These intrinsics weren't added until GCC 8, despite existing for a while, |
|
* and they are endian dependent. Also, their meaning swap depending on version. |
|
* */ |
|
# if defined(__s390x__) |
|
/* s390x is always big endian, no issue on this platform */ |
|
# define XXH_vec_mulo vec_mulo |
|
# define XXH_vec_mule vec_mule |
|
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) |
|
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
|
# define XXH_vec_mulo __builtin_altivec_vmulouw |
|
# define XXH_vec_mule __builtin_altivec_vmuleuw |
|
# else |
|
/* gcc needs inline assembly */ |
|
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
|
{ |
|
xxh_u64x2 result; |
|
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
|
return result; |
|
} |
|
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
|
{ |
|
xxh_u64x2 result; |
|
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
|
return result; |
|
} |
|
# endif /* XXH_vec_mulo, XXH_vec_mule */ |
|
#endif /* XXH_VECTOR == XXH_VSX */ |
|
|
|
|
|
/* prefetch |
|
* can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
|
#if defined(XXH_NO_PREFETCH) |
|
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
|
#else |
|
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ |
|
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
|
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
|
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
|
# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
|
# else |
|
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
|
# endif |
|
#endif /* XXH_NO_PREFETCH */ |
|
|
|
|
|
/* ========================================== |
|
* XXH3 default settings |
|
* ========================================== */ |
|
|
|
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
|
|
|
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
|
# error "default keyset is not large enough" |
|
#endif |
|
|
|
/* Pseudorandom secret taken directly from FARSH */ |
|
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
|
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
|
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
|
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
|
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
|
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
|
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
|
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
|
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
|
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
|
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
|
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
|
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
|
}; |
|
|
|
|
|
#ifdef XXH_OLD_NAMES |
|
# define kSecret XXH3_kSecret |
|
#endif |
|
|
|
/* |
|
* Calculates a 32-bit to 64-bit long multiply. |
|
* |
|
* Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't |
|
* need to (but it shouldn't need to anyways, it is about 7 instructions to do |
|
* a 64x64 multiply...). Since we know that this will _always_ emit MULL, we |
|
* use that instead of the normal method. |
|
* |
|
* If you are compiling for platforms like Thumb-1 and don't have a better option, |
|
* you may also want to write your own long multiply routine here. |
|
* |
|
* XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
|
* { |
|
* return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
|
* } |
|
*/ |
|
#if defined(_MSC_VER) && defined(_M_IX86) |
|
# include <intrin.h> |
|
# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
|
#else |
|
/* |
|
* Downcast + upcast is usually better than masking on older compilers like |
|
* GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
|
* |
|
* The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
|
* and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
|
*/ |
|
# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
|
#endif |
|
|
|
/* |
|
* Calculates a 64->128-bit long multiply. |
|
* |
|
* Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. |
|
*/ |
|
static XXH128_hash_t |
|
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
|
{ |
|
/* |
|
* GCC/Clang __uint128_t method. |
|
* |
|
* On most 64-bit targets, GCC and Clang define a __uint128_t type. |
|
* This is usually the best way as it usually uses a native long 64-bit |
|
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
|
* |
|
* Usually. |
|
* |
|
* Despite being a 32-bit platform, Clang (and emscripten) define this type |
|
* despite not having the arithmetic for it. This results in a laggy |
|
* compiler builtin call which calculates a full 128-bit multiply. |
|
* In that case it is best to use the portable one. |
|
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
|
*/ |
|
#if defined(__GNUC__) && !defined(__wasm__) \ |
|
&& defined(__SIZEOF_INT128__) \ |
|
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
|
|
|
__uint128_t const product = (__uint128_t)lhs * |