2 changed files with 0 additions and 1101 deletions
@ -1,941 +0,0 @@
|
||||
/*
|
||||
xxHash - Fast Hash algorithm |
||||
Copyright (C) 2012-2014, Yann Collet. |
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without |
||||
modification, are permitted provided that the following conditions are |
||||
met: |
||||
|
||||
* Redistributions of source code must retain the above copyright |
||||
notice, this list of conditions and the following disclaimer. |
||||
* Redistributions in binary form must reproduce the above |
||||
copyright notice, this list of conditions and the following disclaimer |
||||
in the documentation and/or other materials provided with the |
||||
distribution. |
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
You can contact the author at : |
||||
- xxHash source repository : http://code.google.com/p/xxhash/
|
||||
- public discussion board : https://groups.google.com/forum/#!forum/lz4c
|
||||
*/ |
||||
|
||||
|
||||
//**************************************
|
||||
// Tuning parameters
|
||||
//**************************************
|
||||
// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
|
||||
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
|
||||
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
|
||||
// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
|
||||
#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
||||
# define XXH_USE_UNALIGNED_ACCESS 1 |
||||
#endif |
||||
|
||||
// XXH_ACCEPT_NULL_INPUT_POINTER :
|
||||
// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
|
||||
// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
|
||||
// This option has a very small performance cost (only measurable on small inputs).
|
||||
// By default, this option is disabled. To enable it, uncomment below define :
|
||||
// #define XXH_ACCEPT_NULL_INPUT_POINTER 1
|
||||
|
||||
// XXH_FORCE_NATIVE_FORMAT :
|
||||
// By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
|
||||
// Results are therefore identical for little-endian and big-endian CPU.
|
||||
// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
|
||||
// Should endian-independance be of no importance for your application, you may set the #define below to 1.
|
||||
// It will improve speed for Big-endian CPU.
|
||||
// This option has no impact on Little_Endian CPU.
|
||||
#define XXH_FORCE_NATIVE_FORMAT 0 |
||||
|
||||
//**************************************
|
||||
// Compiler Specific Options
|
||||
//**************************************
|
||||
// Disable some Visual warning messages
|
||||
#ifdef _MSC_VER // Visual Studio
|
||||
# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
|
||||
#endif |
||||
|
||||
#ifdef _MSC_VER // Visual Studio
|
||||
# define FORCE_INLINE static __forceinline |
||||
#else |
||||
# ifdef __GNUC__ |
||||
# define FORCE_INLINE static inline __attribute__((always_inline)) |
||||
# else |
||||
# define FORCE_INLINE static inline |
||||
# endif |
||||
#endif |
||||
|
||||
//**************************************
|
||||
// Includes & Memory related functions
|
||||
//**************************************
|
||||
#include "xxhash.h" |
||||
// Modify the local functions below should you wish to use some other memory routines
|
||||
// for malloc(), free()
|
||||
#include <stdlib.h> |
||||
static void *XXH_malloc(size_t s) { return malloc(s); } |
||||
static void XXH_free(void *p) { free(p); } |
||||
// for memcpy()
|
||||
#include <string.h> |
||||
static void *XXH_memcpy(void *dest, const void *src, size_t size) |
||||
{ |
||||
return memcpy(dest, src, size); |
||||
} |
||||
|
||||
|
||||
//**************************************
|
||||
// Basic Types
|
||||
//**************************************
|
||||
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
|
||||
# include <stdint.h> |
||||
typedef uint8_t BYTE; |
||||
typedef uint16_t U16; |
||||
typedef uint32_t U32; |
||||
typedef int32_t S32; |
||||
typedef uint64_t U64; |
||||
#else |
||||
typedef unsigned char BYTE; |
||||
typedef unsigned short U16; |
||||
typedef unsigned int U32; |
||||
typedef signed int S32; |
||||
typedef unsigned long long U64; |
||||
#endif |
||||
|
||||
#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS) |
||||
# define _PACKED __attribute__ ((packed)) |
||||
#else |
||||
# define _PACKED |
||||
#endif |
||||
|
||||
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) |
||||
# ifdef __IBMC__ |
||||
# pragma pack(1) |
||||
# else |
||||
# pragma pack(push, 1) |
||||
# endif |
||||
#endif |
||||
|
||||
typedef struct _U32_S |
||||
{ |
||||
U32 v; |
||||
} _PACKED U32_S; |
||||
typedef struct _U64_S |
||||
{ |
||||
U64 v; |
||||
} _PACKED U64_S; |
||||
|
||||
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) |
||||
# pragma pack(pop) |
||||
#endif |
||||
|
||||
#define A32(x) (((U32_S *)(x))->v) |
||||
#define A64(x) (((U64_S *)(x))->v) |
||||
|
||||
|
||||
//***************************************
|
||||
// Compiler-specific Functions and Macros
|
||||
//***************************************
|
||||
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
||||
|
||||
// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
|
||||
#if defined(_MSC_VER) |
||||
# define XXH_rotl32(x,r) _rotl(x,r) |
||||
# define XXH_rotl64(x,r) _rotl64(x,r) |
||||
#else |
||||
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
||||
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
||||
#endif |
||||
|
||||
#if defined(_MSC_VER) // Visual Studio
|
||||
# define XXH_swap32 _byteswap_ulong |
||||
# define XXH_swap64 _byteswap_uint64 |
||||
#elif GCC_VERSION >= 403 |
||||
# define XXH_swap32 __builtin_bswap32 |
||||
# define XXH_swap64 __builtin_bswap64 |
||||
#else |
||||
static inline U32 XXH_swap32(U32 x) |
||||
{ |
||||
return ((x << 24) & 0xff000000) | |
||||
((x << 8) & 0x00ff0000) | |
||||
((x >> 8) & 0x0000ff00) | |
||||
((x >> 24) & 0x000000ff); |
||||
} |
||||
static inline U64 XXH_swap64(U64 x) |
||||
{ |
||||
return ((x << 56) & 0xff00000000000000ULL) | |
||||
((x << 40) & 0x00ff000000000000ULL) | |
||||
((x << 24) & 0x0000ff0000000000ULL) | |
||||
((x << 8) & 0x000000ff00000000ULL) | |
||||
((x >> 8) & 0x00000000ff000000ULL) | |
||||
((x >> 24) & 0x0000000000ff0000ULL) | |
||||
((x >> 40) & 0x000000000000ff00ULL) | |
||||
((x >> 56) & 0x00000000000000ffULL); |
||||
} |
||||
#endif |
||||
|
||||
|
||||
//**************************************
|
||||
// Constants
|
||||
//**************************************
|
||||
#define PRIME32_1 2654435761U |
||||
#define PRIME32_2 2246822519U |
||||
#define PRIME32_3 3266489917U |
||||
#define PRIME32_4 668265263U |
||||
#define PRIME32_5 374761393U |
||||
|
||||
#define PRIME64_1 11400714785074694791ULL |
||||
#define PRIME64_2 14029467366897019727ULL |
||||
#define PRIME64_3 1609587929392839161ULL |
||||
#define PRIME64_4 9650029242287828579ULL |
||||
#define PRIME64_5 2870177450012600261ULL |
||||
|
||||
//**************************************
|
||||
// Architecture Macros
|
||||
//**************************************
|
||||
typedef enum { XXH_bigEndian = 0, XXH_littleEndian = 1 } XXH_endianess; |
||||
#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
|
||||
static const int one = 1; |
||||
# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one)) |
||||
#endif |
||||
|
||||
|
||||
//**************************************
|
||||
// Macros
|
||||
//**************************************
|
||||
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
|
||||
|
||||
|
||||
//****************************
|
||||
// Memory reads
|
||||
//****************************
|
||||
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
||||
|
||||
FORCE_INLINE U32 XXH_readLE32_align(const void *ptr, XXH_endianess endian, |
||||
XXH_alignment align) |
||||
{ |
||||
if (align == XXH_unaligned) |
||||
return endian == XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr)); |
||||
else |
||||
return endian == XXH_littleEndian ? *(U32 *)ptr : XXH_swap32(*(U32 *)ptr); |
||||
} |
||||
|
||||
FORCE_INLINE U32 XXH_readLE32(const void *ptr, XXH_endianess endian) |
||||
{ |
||||
return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
||||
} |
||||
|
||||
FORCE_INLINE U64 XXH_readLE64_align(const void *ptr, XXH_endianess endian, |
||||
XXH_alignment align) |
||||
{ |
||||
if (align == XXH_unaligned) |
||||
return endian == XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr)); |
||||
else |
||||
return endian == XXH_littleEndian ? *(U64 *)ptr : XXH_swap64(*(U64 *)ptr); |
||||
} |
||||
|
||||
FORCE_INLINE U64 XXH_readLE64(const void *ptr, XXH_endianess endian) |
||||
{ |
||||
return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
||||
} |
||||
|
||||
|
||||
//****************************
|
||||
// Simple Hash Functions
|
||||
//****************************
|
||||
FORCE_INLINE U32 XXH32_endian_align(const void *input, size_t len, |
||||
U32 seed, XXH_endianess endian, XXH_alignment align) |
||||
{ |
||||
const BYTE *p = (const BYTE *)input; |
||||
const BYTE *bEnd = p + len; |
||||
U32 h32; |
||||
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
||||
if (p == NULL) |
||||
{ |
||||
len = 0; |
||||
bEnd = p = (const BYTE *)(size_t)16; |
||||
} |
||||
#endif |
||||
|
||||
if (len >= 16) |
||||
{ |
||||
const BYTE *const limit = bEnd - 16; |
||||
U32 v1 = seed + PRIME32_1 + PRIME32_2; |
||||
U32 v2 = seed + PRIME32_2; |
||||
U32 v3 = seed + 0; |
||||
U32 v4 = seed - PRIME32_1; |
||||
|
||||
do |
||||
{ |
||||
v1 += XXH_get32bits(p) * PRIME32_2; |
||||
v1 = XXH_rotl32(v1, 13); |
||||
v1 *= PRIME32_1; |
||||
p += 4; |
||||
v2 += XXH_get32bits(p) * PRIME32_2; |
||||
v2 = XXH_rotl32(v2, 13); |
||||
v2 *= PRIME32_1; |
||||
p += 4; |
||||
v3 += XXH_get32bits(p) * PRIME32_2; |
||||
v3 = XXH_rotl32(v3, 13); |
||||
v3 *= PRIME32_1; |
||||
p += 4; |
||||
v4 += XXH_get32bits(p) * PRIME32_2; |
||||
v4 = XXH_rotl32(v4, 13); |
||||
v4 *= PRIME32_1; |
||||
p += 4; |
||||
} |
||||
while (p <= limit); |
||||
|
||||
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, |
||||
12) + XXH_rotl32(v4, 18); |
||||
} |
||||
else |
||||
h32 = seed + PRIME32_5; |
||||
|
||||
h32 += (U32) len; |
||||
|
||||
while (p + 4 <= bEnd) |
||||
{ |
||||
h32 += XXH_get32bits(p) * PRIME32_3; |
||||
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
||||
p += 4; |
||||
} |
||||
|
||||
while (p < bEnd) |
||||
{ |
||||
h32 += (*p) * PRIME32_5; |
||||
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
||||
p++; |
||||
} |
||||
|
||||
h32 ^= h32 >> 15; |
||||
h32 *= PRIME32_2; |
||||
h32 ^= h32 >> 13; |
||||
h32 *= PRIME32_3; |
||||
h32 ^= h32 >> 16; |
||||
|
||||
return h32; |
||||
} |
||||
|
||||
|
||||
unsigned int XXH32(const void *input, size_t len, unsigned seed) |
||||
{ |
||||
#if 0 |
||||
// Simple version, good for code maintenance, but unfortunately slow for small inputs
|
||||
XXH32_state_t state; |
||||
XXH32_reset(&state, seed); |
||||
XXH32_update(&state, input, len); |
||||
return XXH32_digest(&state); |
||||
#else |
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
||||
|
||||
# if !defined(XXH_USE_UNALIGNED_ACCESS) |
||||
if ((((size_t)input) & 3) == |
||||
0) // Input is aligned, let's leverage the speed advantage
|
||||
{ |
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
||||
else |
||||
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
||||
} |
||||
# endif |
||||
|
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH32_endian_align(input, len, seed, XXH_littleEndian, |
||||
XXH_unaligned); |
||||
else |
||||
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
||||
#endif |
||||
} |
||||
|
||||
FORCE_INLINE U64 XXH64_endian_align(const void *input, size_t len, |
||||
U64 seed, XXH_endianess endian, XXH_alignment align) |
||||
{ |
||||
const BYTE *p = (const BYTE *)input; |
||||
const BYTE *bEnd = p + len; |
||||
U64 h64; |
||||
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
||||
if (p == NULL) |
||||
{ |
||||
len = 0; |
||||
bEnd = p = (const BYTE *)(size_t)32; |
||||
} |
||||
#endif |
||||
|
||||
if (len >= 32) |
||||
{ |
||||
const BYTE *const limit = bEnd - 32; |
||||
U64 v1 = seed + PRIME64_1 + PRIME64_2; |
||||
U64 v2 = seed + PRIME64_2; |
||||
U64 v3 = seed + 0; |
||||
U64 v4 = seed - PRIME64_1; |
||||
|
||||
do |
||||
{ |
||||
v1 += XXH_get64bits(p) * PRIME64_2; |
||||
p += 8; |
||||
v1 = XXH_rotl64(v1, 31); |
||||
v1 *= PRIME64_1; |
||||
v2 += XXH_get64bits(p) * PRIME64_2; |
||||
p += 8; |
||||
v2 = XXH_rotl64(v2, 31); |
||||
v2 *= PRIME64_1; |
||||
v3 += XXH_get64bits(p) * PRIME64_2; |
||||
p += 8; |
||||
v3 = XXH_rotl64(v3, 31); |
||||
v3 *= PRIME64_1; |
||||
v4 += XXH_get64bits(p) * PRIME64_2; |
||||
p += 8; |
||||
v4 = XXH_rotl64(v4, 31); |
||||
v4 *= PRIME64_1; |
||||
} |
||||
while (p <= limit); |
||||
|
||||
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, |
||||
12) + XXH_rotl64(v4, 18); |
||||
|
||||
v1 *= PRIME64_2; |
||||
v1 = XXH_rotl64(v1, 31); |
||||
v1 *= PRIME64_1; |
||||
h64 ^= v1; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
|
||||
v2 *= PRIME64_2; |
||||
v2 = XXH_rotl64(v2, 31); |
||||
v2 *= PRIME64_1; |
||||
h64 ^= v2; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
|
||||
v3 *= PRIME64_2; |
||||
v3 = XXH_rotl64(v3, 31); |
||||
v3 *= PRIME64_1; |
||||
h64 ^= v3; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
|
||||
v4 *= PRIME64_2; |
||||
v4 = XXH_rotl64(v4, 31); |
||||
v4 *= PRIME64_1; |
||||
h64 ^= v4; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
} |
||||
else |
||||
h64 = seed + PRIME64_5; |
||||
|
||||
h64 += (U64) len; |
||||
|
||||
while (p + 8 <= bEnd) |
||||
{ |
||||
U64 k1 = XXH_get64bits(p); |
||||
k1 *= PRIME64_2; |
||||
k1 = XXH_rotl64(k1, 31); |
||||
k1 *= PRIME64_1; |
||||
h64 ^= k1; |
||||
h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; |
||||
p += 8; |
||||
} |
||||
|
||||
if (p + 4 <= bEnd) |
||||
{ |
||||
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; |
||||
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
||||
p += 4; |
||||
} |
||||
|
||||
while (p < bEnd) |
||||
{ |
||||
h64 ^= (*p) * PRIME64_5; |
||||
h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
||||
p++; |
||||
} |
||||
|
||||
h64 ^= h64 >> 33; |
||||
h64 *= PRIME64_2; |
||||
h64 ^= h64 >> 29; |
||||
h64 *= PRIME64_3; |
||||
h64 ^= h64 >> 32; |
||||
|
||||
return h64; |
||||
} |
||||
|
||||
|
||||
unsigned long long XXH64(const void *input, size_t len, |
||||
unsigned long long seed) |
||||
{ |
||||
#if 0 |
||||
// Simple version, good for code maintenance, but unfortunately slow for small inputs
|
||||
XXH64_state_t state; |
||||
XXH64_reset(&state, seed); |
||||
XXH64_update(&state, input, len); |
||||
return XXH64_digest(&state); |
||||
#else |
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
||||
|
||||
# if !defined(XXH_USE_UNALIGNED_ACCESS) |
||||
if ((((size_t)input) & 7) == |
||||
0) // Input is aligned, let's leverage the speed advantage
|
||||
{ |
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
||||
else |
||||
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
||||
} |
||||
# endif |
||||
|
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH64_endian_align(input, len, seed, XXH_littleEndian, |
||||
XXH_unaligned); |
||||
else |
||||
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
||||
#endif |
||||
} |
||||
|
||||
/****************************************************
|
||||
* Advanced Hash Functions |
||||
****************************************************/ |
||||
|
||||
/*** Allocation ***/ |
||||
typedef struct |
||||
{ |
||||
U64 total_len; |
||||
U32 seed; |
||||
U32 v1; |
||||
U32 v2; |
||||
U32 v3; |
||||
U32 v4; |
||||
U32 mem32[4]; /* defined as U32 for alignment */ |
||||
U32 memsize; |
||||
} XXH_istate32_t; |
||||
|
||||
typedef struct |
||||
{ |
||||
U64 total_len; |
||||
U64 seed; |
||||
U64 v1; |
||||
U64 v2; |
||||
U64 v3; |
||||
U64 v4; |
||||
U64 mem64[4]; /* defined as U64 for alignment */ |
||||
U32 memsize; |
||||
} XXH_istate64_t; |
||||
|
||||
|
||||
XXH32_state_t *XXH32_createState(void) |
||||
{ |
||||
XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof( |
||||
XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough
|
||||
return (XXH32_state_t *)XXH_malloc(sizeof(XXH32_state_t)); |
||||
} |
||||
XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr) |
||||
{ |
||||
XXH_free(statePtr); |
||||
return XXH_OK; |
||||
} |
||||
|
||||
XXH64_state_t *XXH64_createState(void) |
||||
{ |
||||
XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof( |
||||
XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough
|
||||
return (XXH64_state_t *)XXH_malloc(sizeof(XXH64_state_t)); |
||||
} |
||||
XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr) |
||||
{ |
||||
XXH_free(statePtr); |
||||
return XXH_OK; |
||||
} |
||||
|
||||
|
||||
/*** Hash feed ***/ |
||||
|
||||
XXH_errorcode XXH32_reset(XXH32_state_t *state_in, U32 seed) |
||||
{ |
||||
XXH_istate32_t *state = (XXH_istate32_t *) state_in; |
||||
state->seed = seed; |
||||
state->v1 = seed + PRIME32_1 + PRIME32_2; |
||||
state->v2 = seed + PRIME32_2; |
||||
state->v3 = seed + 0; |
||||
state->v4 = seed - PRIME32_1; |
||||
state->total_len = 0; |
||||
state->memsize = 0; |
||||
return XXH_OK; |
||||
} |
||||
|
||||
XXH_errorcode XXH64_reset(XXH64_state_t *state_in, unsigned long long seed) |
||||
{ |
||||
XXH_istate64_t *state = (XXH_istate64_t *) state_in; |
||||
state->seed = seed; |
||||
state->v1 = seed + PRIME64_1 + PRIME64_2; |
||||
state->v2 = seed + PRIME64_2; |
||||
state->v3 = seed + 0; |
||||
state->v4 = seed - PRIME64_1; |
||||
state->total_len = 0; |
||||
state->memsize = 0; |
||||
return XXH_OK; |
||||
} |
||||
|
||||
|
||||
FORCE_INLINE XXH_errorcode XXH32_update_endian(XXH32_state_t *state_in, |
||||
const void *input, size_t len, XXH_endianess endian) |
||||
{ |
||||
XXH_istate32_t *state = (XXH_istate32_t *) state_in; |
||||
const BYTE *p = (const BYTE *)input; |
||||
const BYTE *const bEnd = p + len; |
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
||||
if (input == NULL) return XXH_ERROR; |
||||
#endif |
||||
|
||||
state->total_len += len; |
||||
|
||||
if (state->memsize + len < 16) // fill in tmp buffer
|
||||
{ |
||||
XXH_memcpy((BYTE *)(state->mem32) + state->memsize, input, len); |
||||
state->memsize += (U32)len; |
||||
return XXH_OK; |
||||
} |
||||
|
||||
if (state->memsize) // some data left from previous update
|
||||
{ |
||||
XXH_memcpy((BYTE *)(state->mem32) + state->memsize, input, |
||||
16 - state->memsize); |
||||
{ |
||||
const U32 *p32 = state->mem32; |
||||
state->v1 += XXH_readLE32(p32, endian) * PRIME32_2; |
||||
state->v1 = XXH_rotl32(state->v1, 13); |
||||
state->v1 *= PRIME32_1; |
||||
p32++; |
||||
state->v2 += XXH_readLE32(p32, endian) * PRIME32_2; |
||||
state->v2 = XXH_rotl32(state->v2, 13); |
||||
state->v2 *= PRIME32_1; |
||||
p32++; |
||||
state->v3 += XXH_readLE32(p32, endian) * PRIME32_2; |
||||
state->v3 = XXH_rotl32(state->v3, 13); |
||||
state->v3 *= PRIME32_1; |
||||
p32++; |
||||
state->v4 += XXH_readLE32(p32, endian) * PRIME32_2; |
||||
state->v4 = XXH_rotl32(state->v4, 13); |
||||
state->v4 *= PRIME32_1; |
||||
p32++; |
||||
} |
||||
p += 16 - state->memsize; |
||||
state->memsize = 0; |
||||
} |
||||
|
||||
if (p <= bEnd - 16) |
||||
{ |
||||
const BYTE *const limit = bEnd - 16; |
||||
U32 v1 = state->v1; |
||||
U32 v2 = state->v2; |
||||
U32 v3 = state->v3; |
||||
U32 v4 = state->v4; |
||||
|
||||
do |
||||
{ |
||||
v1 += XXH_readLE32(p, endian) * PRIME32_2; |
||||
v1 = XXH_rotl32(v1, 13); |
||||
v1 *= PRIME32_1; |
||||
p += 4; |
||||
v2 += XXH_readLE32(p, endian) * PRIME32_2; |
||||
v2 = XXH_rotl32(v2, 13); |
||||
v2 *= PRIME32_1; |
||||
p += 4; |
||||
v3 += XXH_readLE32(p, endian) * PRIME32_2; |
||||
v3 = XXH_rotl32(v3, 13); |
||||
v3 *= PRIME32_1; |
||||
p += 4; |
||||
v4 += XXH_readLE32(p, endian) * PRIME32_2; |
||||
v4 = XXH_rotl32(v4, 13); |
||||
v4 *= PRIME32_1; |
||||
p += 4; |
||||
} |
||||
while (p <= limit); |
||||
|
||||
state->v1 = v1; |
||||
state->v2 = v2; |
||||
state->v3 = v3; |
||||
state->v4 = v4; |
||||
} |
||||
|
||||
if (p < bEnd) |
||||
{ |
||||
XXH_memcpy(state->mem32, p, bEnd - p); |
||||
state->memsize = (int)(bEnd - p); |
||||
} |
||||
|
||||
return XXH_OK; |
||||
} |
||||
|
||||
XXH_errorcode XXH32_update(XXH32_state_t *state_in, const void *input, |
||||
size_t len) |
||||
{ |
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
||||
|
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
||||
else |
||||
return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
||||
} |
||||
|
||||
|
||||
|
||||
FORCE_INLINE U32 XXH32_digest_endian(const XXH32_state_t *state_in, |
||||
XXH_endianess endian) |
||||
{ |
||||
XXH_istate32_t *state = (XXH_istate32_t *) state_in; |
||||
const BYTE *p = (const BYTE *)state->mem32; |
||||
BYTE *bEnd = (BYTE *)(state->mem32) + state->memsize; |
||||
U32 h32; |
||||
|
||||
if (state->total_len >= 16) |
||||
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, |
||||
7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
||||
else |
||||
h32 = state->seed + PRIME32_5; |
||||
|
||||
h32 += (U32) state->total_len; |
||||
|
||||
while (p + 4 <= bEnd) |
||||
{ |
||||
h32 += XXH_readLE32(p, endian) * PRIME32_3; |
||||
h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
||||
p += 4; |
||||
} |
||||
|
||||
while (p < bEnd) |
||||
{ |
||||
h32 += (*p) * PRIME32_5; |
||||
h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
||||
p++; |
||||
} |
||||
|
||||
h32 ^= h32 >> 15; |
||||
h32 *= PRIME32_2; |
||||
h32 ^= h32 >> 13; |
||||
h32 *= PRIME32_3; |
||||
h32 ^= h32 >> 16; |
||||
|
||||
return h32; |
||||
} |
||||
|
||||
|
||||
U32 XXH32_digest(const XXH32_state_t *state_in) |
||||
{ |
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
||||
|
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH32_digest_endian(state_in, XXH_littleEndian); |
||||
else |
||||
return XXH32_digest_endian(state_in, XXH_bigEndian); |
||||
} |
||||
|
||||
|
||||
FORCE_INLINE XXH_errorcode XXH64_update_endian(XXH64_state_t *state_in, |
||||
const void *input, size_t len, XXH_endianess endian) |
||||
{ |
||||
XXH_istate64_t *state = (XXH_istate64_t *) state_in; |
||||
const BYTE *p = (const BYTE *)input; |
||||
const BYTE *const bEnd = p + len; |
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
||||
if (input == NULL) return XXH_ERROR; |
||||
#endif |
||||
|
||||
state->total_len += len; |
||||
|
||||
if (state->memsize + len < 32) // fill in tmp buffer
|
||||
{ |
||||
XXH_memcpy(((BYTE *)state->mem64) + state->memsize, input, len); |
||||
state->memsize += (U32)len; |
||||
return XXH_OK; |
||||
} |
||||
|
||||
if (state->memsize) // some data left from previous update
|
||||
{ |
||||
XXH_memcpy(((BYTE *)state->mem64) + state->memsize, input, |
||||
32 - state->memsize); |
||||
{ |
||||
const U64 *p64 = state->mem64; |
||||
state->v1 += XXH_readLE64(p64, endian) * PRIME64_2; |
||||
state->v1 = XXH_rotl64(state->v1, 31); |
||||
state->v1 *= PRIME64_1; |
||||
p64++; |
||||
state->v2 += XXH_readLE64(p64, endian) * PRIME64_2; |
||||
state->v2 = XXH_rotl64(state->v2, 31); |
||||
state->v2 *= PRIME64_1; |
||||
p64++; |
||||
state->v3 += XXH_readLE64(p64, endian) * PRIME64_2; |
||||
state->v3 = XXH_rotl64(state->v3, 31); |
||||
state->v3 *= PRIME64_1; |
||||
p64++; |
||||
state->v4 += XXH_readLE64(p64, endian) * PRIME64_2; |
||||
state->v4 = XXH_rotl64(state->v4, 31); |
||||
state->v4 *= PRIME64_1; |
||||
p64++; |
||||
} |
||||
p += 32 - state->memsize; |
||||
state->memsize = 0; |
||||
} |
||||
|
||||
if (p + 32 <= bEnd) |
||||
{ |
||||
const BYTE *const limit = bEnd - 32; |
||||
U64 v1 = state->v1; |
||||
U64 v2 = state->v2; |
||||
U64 v3 = state->v3; |
||||
U64 v4 = state->v4; |
||||
|
||||
do |
||||
{ |
||||
v1 += XXH_readLE64(p, endian) * PRIME64_2; |
||||
v1 = XXH_rotl64(v1, 31); |
||||
v1 *= PRIME64_1; |
||||
p += 8; |
||||
v2 += XXH_readLE64(p, endian) * PRIME64_2; |
||||
v2 = XXH_rotl64(v2, 31); |
||||
v2 *= PRIME64_1; |
||||
p += 8; |
||||
v3 += XXH_readLE64(p, endian) * PRIME64_2; |
||||
v3 = XXH_rotl64(v3, 31); |
||||
v3 *= PRIME64_1; |
||||
p += 8; |
||||
v4 += XXH_readLE64(p, endian) * PRIME64_2; |
||||
v4 = XXH_rotl64(v4, 31); |
||||
v4 *= PRIME64_1; |
||||
p += 8; |
||||
} |
||||
while (p <= limit); |
||||
|
||||
state->v1 = v1; |
||||
state->v2 = v2; |
||||
state->v3 = v3; |
||||
state->v4 = v4; |
||||
} |
||||
|
||||
if (p < bEnd) |
||||
{ |
||||
XXH_memcpy(state->mem64, p, bEnd - p); |
||||
state->memsize = (int)(bEnd - p); |
||||
} |
||||
|
||||
return XXH_OK; |
||||
} |
||||
|
||||
XXH_errorcode XXH64_update(XXH64_state_t *state_in, const void *input, |
||||
size_t len) |
||||
{ |
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
||||
|
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
||||
else |
||||
return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
||||
} |
||||
|
||||
|
||||
|
||||
FORCE_INLINE U64 XXH64_digest_endian(const XXH64_state_t *state_in, |
||||
XXH_endianess endian) |
||||
{ |
||||
XXH_istate64_t *state = (XXH_istate64_t *) state_in; |
||||
const BYTE *p = (const BYTE *)state->mem64; |
||||
BYTE *bEnd = (BYTE *)state->mem64 + state->memsize; |
||||
U64 h64; |
||||
|
||||
if (state->total_len >= 32) |
||||
{ |
||||
U64 v1 = state->v1; |
||||
U64 v2 = state->v2; |
||||
U64 v3 = state->v3; |
||||
U64 v4 = state->v4; |
||||
|
||||
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, |
||||
12) + XXH_rotl64(v4, 18); |
||||
|
||||
v1 *= PRIME64_2; |
||||
v1 = XXH_rotl64(v1, 31); |
||||
v1 *= PRIME64_1; |
||||
h64 ^= v1; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
|
||||
v2 *= PRIME64_2; |
||||
v2 = XXH_rotl64(v2, 31); |
||||
v2 *= PRIME64_1; |
||||
h64 ^= v2; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
|
||||
v3 *= PRIME64_2; |
||||
v3 = XXH_rotl64(v3, 31); |
||||
v3 *= PRIME64_1; |
||||
h64 ^= v3; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
|
||||
v4 *= PRIME64_2; |
||||
v4 = XXH_rotl64(v4, 31); |
||||
v4 *= PRIME64_1; |
||||
h64 ^= v4; |
||||
h64 = h64 * PRIME64_1 + PRIME64_4; |
||||
} |
||||
else |
||||
h64 = state->seed + PRIME64_5; |
||||
|
||||
h64 += (U64) state->total_len; |
||||
|
||||
while (p + 8 <= bEnd) |
||||
{ |
||||
U64 k1 = XXH_readLE64(p, endian); |
||||
k1 *= PRIME64_2; |
||||
k1 = XXH_rotl64(k1, 31); |
||||
k1 *= PRIME64_1; |
||||
h64 ^= k1; |
||||
h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; |
||||
p += 8; |
||||
} |
||||
|
||||
if (p + 4 <= bEnd) |
||||
{ |
||||
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; |
||||
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
||||
p += 4; |
||||
} |
||||
|
||||
while (p < bEnd) |
||||
{ |
||||
h64 ^= (*p) * PRIME64_5; |
||||
h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
||||
p++; |
||||
} |
||||
|
||||
h64 ^= h64 >> 33; |
||||
h64 *= PRIME64_2; |
||||
h64 ^= h64 >> 29; |
||||
h64 *= PRIME64_3; |
||||
h64 ^= h64 >> 32; |
||||
|
||||
return h64; |
||||
} |
||||
|
||||
|
||||
unsigned long long XXH64_digest(const XXH64_state_t *state_in) |
||||
{ |
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
||||
|
||||
if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
||||
return XXH64_digest_endian(state_in, XXH_littleEndian); |
||||
else |
||||
return XXH64_digest_endian(state_in, XXH_bigEndian); |
||||
} |
||||
|
||||
|
@ -1,160 +0,0 @@
|
||||
/*
|
||||
xxHash - Extremely Fast Hash algorithm |
||||
Header File |
||||
Copyright (C) 2012-2014, Yann Collet. |
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without |
||||
modification, are permitted provided that the following conditions are |
||||
met: |
||||
|
||||
* Redistributions of source code must retain the above copyright |
||||
notice, this list of conditions and the following disclaimer. |
||||
* Redistributions in binary form must reproduce the above |
||||
copyright notice, this list of conditions and the following disclaimer |
||||
in the documentation and/or other materials provided with the |
||||
distribution. |
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
You can contact the author at : |
||||
- xxHash source repository : http://code.google.com/p/xxhash/
|
||||
*/ |
||||
|
||||
/* Notice extracted from xxHash homepage :
|
||||
|
||||
xxHash is an extremely fast Hash algorithm, running at RAM speed limits. |
||||
It also successfully passes all tests from the SMHasher suite. |
||||
|
||||
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
||||
|
||||
Name Speed Q.Score Author |
||||
xxHash 5.4 GB/s 10 |
||||
CrapWow 3.2 GB/s 2 Andrew |
||||
MumurHash 3a 2.7 GB/s 10 Austin Appleby |
||||
SpookyHash 2.0 GB/s 10 Bob Jenkins |
||||
SBox 1.4 GB/s 9 Bret Mulvey |
||||
Lookup3 1.2 GB/s 9 Bob Jenkins |
||||
SuperFastHash 1.2 GB/s 1 Paul Hsieh |
||||
CityHash64 1.05 GB/s 10 Pike & Alakuijala |
||||
FNV 0.55 GB/s 5 Fowler, Noll, Vo |
||||
CRC32 0.43 GB/s 9 |
||||
MD5-32 0.33 GB/s 10 Ronald L. Rivest |
||||
SHA1-32 0.28 GB/s 10 |
||||
|
||||
Q.Score is a measure of quality of the hash function. |
||||
It depends on successfully passing SMHasher test set. |
||||
10 is a perfect score. |
||||
*/ |
||||
|
||||
#pragma once |
||||
|
||||
#if defined (__cplusplus) |
||||
extern "C" { |
||||
#endif |
||||
|
||||
|
||||
/*****************************
|
||||
Includes |
||||
*****************************/ |
||||
#include <stddef.h> /* size_t */ |
||||
|
||||
|
||||
/*****************************
|
||||
Type |
||||
*****************************/ |
||||
typedef enum { XXH_OK = 0, XXH_ERROR } XXH_errorcode; |
||||
|
||||
|
||||
|
||||
/*****************************
|
||||
Simple Hash Functions |
||||
*****************************/ |
||||
|
||||
unsigned int XXH32(const void *input, size_t length, unsigned seed); |
||||
unsigned long long XXH64(const void *input, size_t length, |
||||
unsigned long long seed); |
||||
|
||||
/*
|
||||
XXH32() : |
||||
Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input". |
||||
The memory between input & input+length must be valid (allocated and read-accessible). |
||||
"seed" can be used to alter the result predictably. |
||||
This function successfully passes all SMHasher tests. |
||||
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s |
||||
XXH64() : |
||||
Calculate the 64-bits hash of sequence of length "len" stored at memory address "input". |
||||
*/ |
||||
|
||||
|
||||
|
||||
/*****************************
|
||||
Advanced Hash Functions |
||||
*****************************/ |
||||
typedef struct { long long ll[ 6]; } XXH32_state_t; |
||||
typedef struct { long long ll[11]; } XXH64_state_t; |
||||
|
||||
/*
|
||||
These structures allow static allocation of XXH states. |
||||
States must then be initialized using XXHnn_reset() before first use. |
||||
|
||||
If you prefer dynamic allocation, please refer to functions below. |
||||
*/ |
||||
|
||||
XXH32_state_t *XXH32_createState(void); |
||||
XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr); |
||||
|
||||
XXH64_state_t *XXH64_createState(void); |
||||
XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr); |
||||
|
||||
/*
|
||||
These functions create and release memory for XXH state. |
||||
States must then be initialized using XXHnn_reset() before first use. |
||||
*/ |
||||
|
||||
|
||||
XXH_errorcode XXH32_reset(XXH32_state_t *statePtr, unsigned seed); |
||||
XXH_errorcode XXH32_update(XXH32_state_t *statePtr, const void *input, |
||||
size_t length); |
||||
unsigned int XXH32_digest(const XXH32_state_t *statePtr); |
||||
|
||||
XXH_errorcode XXH64_reset(XXH64_state_t *statePtr, |
||||
unsigned long long seed); |
||||
XXH_errorcode XXH64_update(XXH64_state_t *statePtr, const void *input, |
||||
size_t length); |
||||
unsigned long long XXH64_digest(const XXH64_state_t *statePtr); |
||||
|
||||
/*
|
||||
These functions calculate the xxHash of an input provided in multiple smaller packets, |
||||
as opposed to an input provided as a single block. |
||||
|
||||
XXH state space must first be allocated, using either static or dynamic method provided above. |
||||
|
||||
Start a new hash by initializing state with a seed, using XXHnn_reset(). |
||||
|
||||
Then, feed the hash state by calling XXHnn_update() as many times as necessary. |
||||
Obviously, input must be valid, meaning allocated and read accessible. |
||||
The function returns an error code, with 0 meaning OK, and any other value meaning there is an error. |
||||
|
||||
Finally, you can produce a hash anytime, by using XXHnn_digest(). |
||||
This function returns the final nn-bits hash. |
||||
You can nonetheless continue feeding the hash state with more input, |
||||
and therefore get some new hashes, by calling again XXHnn_digest(). |
||||
|
||||
When you are done, don't forget to free XXH state space, using typically XXHnn_freeState(). |
||||
*/ |
||||
|
||||
|
||||
#if defined (__cplusplus) |
||||
} |
||||
#endif |
Loading…
Reference in new issue